The Effect of Wave Directionality on Low Frequency Motions and Mooring Forces

AuthorsOlaf Waals (MARIN)
Conference/JournalOMAE Conference, Honolulu
DateJun 1, 2009

Operability of offshore moored ships can be affected by low frequency wave loads. The low frequency motions of a moored ship may limit the uptime of an offshore structure such as an LNG offloading terminal. The wave loads that cause the main excitation of these low frequency motions are usually computed using second order wave drift theory for long crested waves, which assumes that the low frequency components are only related to waves coming from the same direction. In this method short crested seas are dealt with as a summation of long crested seas, but no interaction between the wave components traveling in different directions is usually taken into account. This paper describes the results of a study to the effect of 2nd order low frequency wave loads in directional seas. For this study the drift forces related to the interaction between waves coming from different directions is also included. This is done by computing the quadratic transfer functions (QTF) for all possible combinations of wave components (frequencies and directions). Time traces of drift forces are generated and compared to the results without wave directional interaction after which the motions of an LNG carrier are simulated. A sensitivity study is carried out towards the number of direction steps and the water depth. Finally the motions of an LNG carrier in shallow water (15m water depth) are simulated and mooring forces are compared for various amounts of wave spreading.

stability, seakeeping and ocean engineeringwaves, impacts and hydrostructuralcfd developmentcfd/simulation/desk studiesmeasurements and controldata sciencetime-domain simulationsrenewablesoil and gasinfrastructuremarine systemslife at seatransport and shippingmodel testingmooring and offloadingmotionssimulationwavesoffshore engineering