Ship As a Wave Buoy - Estimating Full Direction Wave Spectra From In-service Ship Motion Measurements Using Deep Learning

AuthorsScholcz, T.P., Mak, B.
Conference/Journal39th International Conference on Ocean, Offshore & Arctic Engineering (OMAE 2020)
DateAug 1, 2020
The ocean wave directional spectrum is an important wave characteristic for maritime safety and navigation. Accurate estimation of directional spectra in real-time is a challenge. In this study we aim to reconstruct the directional spectra from ship motions using a deep convolutional encoding-decoding neural network. In-service measurements of ship motions and wave spectra from a WAMOS II wave scanning radar were used to train the neural network. The data was collected from a frigate type ship for a period of two years. We demonstrate that the deep convolutional encoding-decoding neural network is successful in predicting the directional spectra in real-time. At the same time, we conclude that more data is needed for a better prediction performance , including a more complete coverage of operational conditions.
data scienceresearch and developmentseakeepingnavywaves, impacts and hydrostructuralonboard advisorymarine systems