Interaction Between Warm Model Ice and a Propeller

AuthorsT.J. Huisman, R.W. Bos, J. Brouwer, G. Hagesteijn and H.J. de Koning Gans
Conference/JournalOMAE ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, San Francisco, USA, 2014
DateJun 13, 2014

Ships sailing in ice require a propeller that is able to endure both extreme loads and fatigue loads and operate efficiently in ice and open water. Knowledge and descriptions of the physical processes of propeller-ice interaction are essential to model the interaction with its dominant parameters and finally predict the loads. The research described in this paper uses an experimental setup to determine if the crushing strength of ice, or in general a solid, is a dominant parameter in propeller-ice interaction as stated in empirical and theoretical models. Warm model ice, a paraffin based material to be used at room temperature, with ex-situ tested crushing strength, density and elasticity, is supplied to an in-situ model propeller at different rpms. One blade of the propeller is equipped with a six-component load sensor. Impacts are recorded in the time domain and synchronised with high speed footage. The data is analysed to understand and explain the impact behaviour by comparing it with rotational speed, load and footage. Scaling of the warm model ice properties is discussed as well due to density differences between warm modelice and sea ice.

Tags
sustainable propulsionmeasurements and controldata scienceresistance and propulsionmarine systemspoweringmodel testingpropulsionicepropellerpropulsor