Show all publications

OC6 project Phase IV: validation of numerical models for novel floating offshore wind support structures

AuthorsBergua, R., Wiley, W., Robertson, A., Jonkman, J., Brun, C. et al.
Conference/JournalWind Energy Science
Date29 Apr 2024
This paper provides a summary of the work done within Phase IV of the Offshore Code Comparison Collaboration, Continued with Correlation and unCertainty (OC6) project, under International Energy Agency Wind Technology Collaboration Programme Task 30. This phase focused on validating the loading on and motion of a novel floating offshore wind system. Numerical models of a 3.6 MW horizontal-axis wind turbine atop the TetraSpar floating support structure were compared using measurement data from a 1:43-Froude-scale test performed in the University of Maine's Alfond Wind–Wave (W2) Ocean Engineering Laboratory. Participants in the project ran a series of simulations, including system equilibrium, surge offsets, free-decay tests, wind-only conditions, wave-only conditions, and a combination of wind and wave conditions. Validation of the models was performed by comparing the aerodynamic loading, floating support structure motion, tower base loading, mooring line tensions, and keel line tensions. The results show a relatively good estimation of the aerodynamic loading and a reasonable estimation of the platform motion and tower base fore–aft bending moment. However, there is a significant dispersion in the dynamic loading for the upwind mooring line. Very good agreement was observed between most of the numerical models and the experiment for the keel line tensions.


Contact person photo

Eelco Frickel

Senior Researcher/Teamleader

Arjen Koop

Senior Researcher/Teamleader

You will need an account to view this content

To view this content you will need a login account. If you already have an account you can sign in below. If you want an account then you can create one.

offshore windfloating wind turbinefloating windoffshore