Show all publications

Evaluation of Scale-Resolving Simulations for a Turbulent Channel Flow

AuthorsKlapwijk, M., Lloyd, T., Vaz, G., Terwisga, T. van
Conference/JournalComputers and Fluids
Date20 Jun 2020
Volume209
Different variable resolution turbulence modelling approaches (Hybrid, Bridging models and LES) are evaluated for turbulent channel flow at Reτ=395, for cases using streamwise periodic boundary conditions and a synthetic turbulence generator. The effect of iterative, statistical and discretisation errors is investigated. For LES, little difference between the different sub-filter modelling approaches is found on the finer grids, while on coarser grids ILES deviates from explicit LES approaches. The results for Hybrid models are strongly dependent on their formulation, and the corresponding blending between the RANS and LES regions. The application of PANS with different ratios of modelled-to-total kinetic energy, fk, shows that there is no smooth transition in the results between RANS and DNS. Instead a case-dependent threshold which separates two solution regimes is observed: fk values below 0.2 yield a proper turbulent solution, similar to LES results; higher fk values lead to a laminar flow due to filtering of the smallest scales in the inverse energy cascade. The application of a synthetic turbulence generator is observed to yield similar performance for all models. The reduced computational cost and increased flexibility makes it a suitable approach to enable the usage of SRS for industrial flow cases which depend on the development of a turbulent boundary layer. It ensures that sufficient large scale structures develop over the full boundary layer height, thereby negating the problem of relying on the inverse energy cascade for the development of turbulence. Both LES and PANS with turbulence generator yield a better match with the reference data than Hybrid models; of these methods PANS is preferable due to the separation of modelling and discretisation errors.

Contact

Contact person photo

Thomas Lloyd

Specialist, Noise and Vibrations

Tom van Terwisga

Team leader Resistance and Propulsion

You will need an account to view this content

To view this content you will need a login account. If you already have an account you can sign in below. If you want an account then you can create one.

Tags
cfdcfd/simulation/desk studies