Cookies

By selecting accept and continuing to browse the site, you agree to our use of cookies. With those we collect personal data anonymously and track what visitors do on our website. We use this information to improve our website and show you information and articles to suit your interests. If you don't want our cookies, you will not be able to watch videos or share items on social media. More information?

No, I do not accept cookies

Are you sure you don't want to accept cookies?

You will not be able to watch videos or share articles on social media..

Accept Cookies
Deny Cookies

About

  • Our story
  • Governance
  • Facilities & Tools
  • MARIN Kids
  • Download centre
  • News
  • Events
  • Experts
  • Recruitment
  • Contact

Markets

  • Life at Sea
  • Oil and Gas
  • Transport and Shipping
  • Defence
  • Renewables
  • Passengers and Yachting
  • Infrastructure
  • Marine Systems
  • Authorities and Regulators

Research

  • Technology roadmap
  • JIPs & Networks
  • Publications
  • MARIN Report magazine
  • Courses
  • Research Integrity Principles

About

  • Our story
  • Governance
  • Facilities & Tools
  • MARIN Kids
  • Download centre
  • News
  • Events
  • Experts
  • Recruitment
  • Contact

Markets

  • Life at Sea
  • Oil and Gas
  • Transport and Shipping
  • Defence
  • Renewables
  • Passengers and Yachting
  • Infrastructure
  • Marine Systems
  • Authorities and Regulators

Research

  • Technology roadmap
  • JIPs & Networks
  • Publications
  • MARIN Report magazine
  • Courses
  • Research Integrity Principles
    • Change language
    • Publications

    • Paper

    Show all publications

    Evaluation of directional analysis methods for low-frequency waves to predict LNGC motion response in nearshore areas

    Authors
    van Essen, S., Huijsmans, R., van der Hout, A., Waals, O.
    Date
    Jun 18, 2013

    Because LNG terminals are located increasingly close to shore, the importance of shallow-water effects associated with low-frequency (LF) waves increases as well. The LF wave spectrum in these areas is generally complex, with multiple frequency peaks and/or directional peaks due to LF wave interaction with the shore. Both free and bound LF waves at the same frequency can be present. Since LF waves are potentially very significant for moored vessel motions, it is important to include their effect in an early stage of the terminal design. This requires an efficient and relatively simple tool able to estimate the LF wave spectrum in nearshore areas. The benefit of such a procedure with respect to state-of-the-art response methods is the ability to include the LF free wave distribution in a local wave field in the vessel response calculation. The objectives of the present study are to identify such a tool, and to evaluate the use of its output as input for a vessel motion calculation. Three methods, designed for the determination of wave spectra of free wave-frequency (WF) waves, were applied to artificial LF wave fields for comparison of their performance. Two stochastic methods, EMEP (Hashimoto et al., 1994) and BDM (Hashimoto et al., 1987) and one deterministic method, r-DPRA (De Jong and Borsboom, 2012) were selected for this comparison. The foreseen application is beyond the formal capabilities for which these three methods were intended. However, in this study we have investigated how far we can take these existing methods for the determination of directional LF wave spectra. Sensitivity analyses showed that the EMEP method is the most suitable method of the three for a range of LF wave fields. The reconstructed LF wave spectra using EMEP resembled the input spectra most closely over the whole range of water depths and frequencies, although its performance deteriorated with increasing water depth and wave frequency. Subsequently, a first effort was made to use the information in the reconstructed EMEP LF wave spectrum of a representative shallow-water wave field for a first estimate of the motions of a moored LNG carrier. The results were acceptable. This is a first indication that EMEP output might be used to calculate the motions of an LNG carrier moored in shallow water.

    Download

    Evaluation of directional analysis methods for low-frequency waves to predict LNGC motion response in nearshore areas (pdf)

    ×

    You will need an account for this download

    To download this document you will need a login account. If you already have an account you can sign in below. If you want an account then you can create one.

    Login Create an account

    Experts

    Sanne van Essen

    Senior Project Manager Seakeeping

    TAGS

    Stability, Seakeeping and Ocean Engineering Waves, Impacts and Hydrostructural Measurements and Control Data Science Renewables Oil and Gas Infrastructure Marine Systems Life at Sea Seakeeping Model Testing waves offshore engineering

    Related publications

    Paper

    Low Frequency Motions of LNG carriers Mo...

    Low Frequency Motions of LNG carriers Moored in Shallow Water

    Jun 1, 2004

    With the LNG market booming, the need for reliable and safe means of transferring LNG from a produci...

    Paper

    Downtime Analysis Methods for Offshore D...

    Downtime Analysis Methods for Offshore Dredging Operations

    Sep 1, 2003

    The operation of dredgers at sea may be seriously affected by the marine environment. This can lead...

    Paper

    Mean and Low Frequency Roll for Semi-sub...

    Mean and Low Frequency Roll for Semi-submersibles in Waves

    Jan 1, 2002

    The paper demonstrates how the findings of a series of model tests and diffraction calculations, per...

    Paper

    The Low Frequency Motions of a Semi-subm...

    The Low Frequency Motions of a Semi-submersible in Waves

    Aug 1, 1982

    In this paper attention is paid to low frequency wave drift forces on a semi-submersible moored in i...

      CONTACT

      MARIN

      Haagsteeg 2

      6708 PM Wageningen

      The Netherlands

      + 31 317 493 911

      info@marin.nl

      route

      51.971139 / 5.654639

        Follow us

        • Contact
        • Privacy & Cookie policy
        • Disclaimer
        • Terms & conditions
        2019 © MARIN