Cookies

By selecting accept and continuing to browse the site, you agree to our use of cookies. With those we collect personal data anonymously and track what visitors do on our website. We use this information to improve our website and show you information and articles to suit your interests. If you don't want our cookies, you will not be able to watch videos or share items on social media. More information?

No, I do not accept cookies

Are you sure you don't want to accept cookies?

You will not be able to watch videos or share articles on social media..

Accept Cookies
Deny Cookies

About

  • Our story
  • Governance
  • Facilities & Tools
  • MARIN Kids
  • Download centre
  • News
  • Events
  • Experts
  • Recruitment
  • Contact

Markets

  • Life at Sea
  • Oil and Gas
  • Transport and Shipping
  • Defence
  • Renewables
  • Passengers and Yachting
  • Infrastructure
  • Marine Systems
  • Authorities and Regulators

Research

  • Technology roadmap
  • JIPs & Networks
  • Publications
  • MARIN Report magazine
  • Courses
  • Research Integrity Principles

About

  • Our story
  • Governance
  • Facilities & Tools
  • MARIN Kids
  • Download centre
  • News
  • Events
  • Experts
  • Recruitment
  • Contact

Markets

  • Life at Sea
  • Oil and Gas
  • Transport and Shipping
  • Defence
  • Renewables
  • Passengers and Yachting
  • Infrastructure
  • Marine Systems
  • Authorities and Regulators

Research

  • Technology roadmap
  • JIPs & Networks
  • Publications
  • MARIN Report magazine
  • Courses
  • Research Integrity Principles
    • Change language
    • Publications

    • Paper

    Show all publications

    CFD simulation of wind flow over natural complex terrain: Case study with validation by field measurements for Ria de Ferrol, Galicia, Spain

    Authors
    Blocken, B., Hout, A. van der, Dekker, J. and Weiler, O.
    Date
    Dec 1, 2015

    Accurate and reliable Computational Fluid Dynamics (CFD) simulations of wind flow over natural complex terrain are important for a wide range of applications including dispersion of pollutants, wind energy resource assessment and ship manoeuvring in channels and near harbours. In the past 50 years, a very large number of CFD studies of wind flow over hills have been performed. However, a detailed review of the literature shows a lack of CFD studies including validation by field measurements for natural complex terrain beyond the case of isolated hills. Therefore, this paper presents a CFD study with field measurement validation for natural complex terrain that consists of an irregular succession of hills and valleys surrounding a narrow entrance channel. The aim of the study is twofold: (1) to evaluate the accuracy of 3D steady Reynolds-averaged Navier–Stokes (RANS) simulations with a revised k–ε model for calculating mean wind-velocity patterns over this type of natural complex terrain; and (2) to provide mean velocity data that can be used as input for real-time ship manoeuvring simulations to evaluate accessing the LNG terminal with larger LNG carriers. The irregular hilly terrain is expected to yield complex wind environmental conditions in the channel and complex forces on the LNG carriers. The study focuses on high wind speed conditions, for which the atmospheric boundary layer exhibits neutral stratification. The simulations are performed with 3D steady RANS and the realisable k–ε model for 12 wind directions. Special attention is given to surface roughness parameterisation and specification. The simulation results of mean wind speed and wind direction are generally within 10–20% of the corresponding measurement values. The results show that for wind directions 60° and 90°, the funnelling effect leads to an increase of wind speed in the channel compared to the wind speed over open sea. For other wind directions, the topography leads to a reduction of the wind speed in the channel, but also to strong wind speed gradients along the channel axis, which are important for ship manoeuvring. The study shows that for the present application, the 3D steady RANS approach with the realisable k–ε model can provide an accurate assessment of the complex mean wind-flow patterns and the funnelling effect by the natural complex topography on the wind.

    Download

    CFD simulation of wind flow over natural complex terrain: Case study with validation by field measurements for Ria de Ferrol, Galicia, Spain (pdf)

    ×

    You will need an account for this download

    To download this document you will need a login account. If you already have an account you can sign in below. If you want an account then you can create one.

    Login Create an account

    TAGS

    Stability, Seakeeping and Ocean Engineering CFD Development CFD/Simulation/Desk Studies Time-domain Simulations Nautical Centre MSCN simulation

    Related publications

    Paper

    Simulation and Development of a Wind-Wav...

    Simulation and Development of a Wind-Wave Facility for Scale Testing of Offshore Floating Wind Turbines

    Jun 19, 2016

    We present the simulation, design, and construction of a wind generation system for use in a modifie...

    Magazine

    Determining wind loads with CFD

    Determining wind loads with CFD

    Dec 16, 2011

    Report highlights how Computational Fluid Dynamics (CFD) are playing an increasingly important role...

    Magazine

    CFD for offshore applications

    CFD for offshore applications

    Apr 26, 2010

    In 2009, MARIN took a major step towards the commercial application of Computational Fluid Dynamics...

    Paper

    Viscous Flow Computations on Smooth Cyli...

    Viscous Flow Computations on Smooth Cylinders - a Detailed Numerical Study with Validation

    Jun 1, 2007

    The objective of this paper is to investigate several numerical and modelling features that the CFD...

      CONTACT

      MARIN

      Haagsteeg 2

      6708 PM Wageningen

      The Netherlands

      + 31 317 493 911

      info@marin.nl

      route

      51.971139 / 5.654639

        Follow us

        • Contact
        • Privacy & Cookie policy
        • Disclaimer
        • Terms & conditions
        2019 © MARIN