

TopTier open meeting 8 April 2025

Time (CET)	Торіс
09:00 - 09:30	Registration & Coffee
09:30 - 10:00	TopTier overview
10:00 - 10:40	Avoiding 'major off-design' container losses
10:40 - 11:00	Panel discussion
11:00 - 11:30	Coffee break
11:30 - 12:10	Avoiding 'modest in-design' container losses
12:10 - 12:30	Panel discussion
12:30 - 13:00	TopTier follow up pitches / Open floor
13:00 - 14:00	Lunch

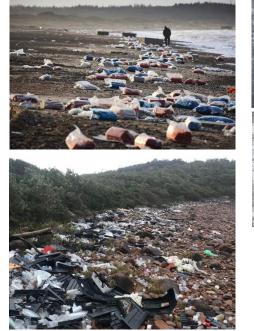
Please note there are only limited seats available and that you can follow the meeting online as well (<u>zoom link</u>). Register at <u>registrations.marin.nl/blueweek-2025</u>

Venue: MARIN, Haagsteeg 2, 6708 PM Wageningen

For questions; Toptier@marin.nl

AGENDA

Time (CET)	Торіс
09:00 - 09:30	Registration & Coffee
09:30 – 10:00	TopTier overview
10:00 - 10:40	Avoiding 'major off-design' container losses
10:40 - 11:00	Panel discussion
11:00 - 11:30	Coffee break
11:30 - 12:10	Avoiding 'modest in-design' container losses
12:10 - 12:30	Panel discussion
12:30 - 13:00	TopTier follow up pitches / Open floor
13:00 - 14:00	Lunch


TopTier open event

2025-04-08

2021 ... Why, where, when, how many

- Averaged 1482 per year (WSC)
- Fraction of 250.000.000 But too high as absolute
- Public concern on safety standards in shipping

But not a new topic ...

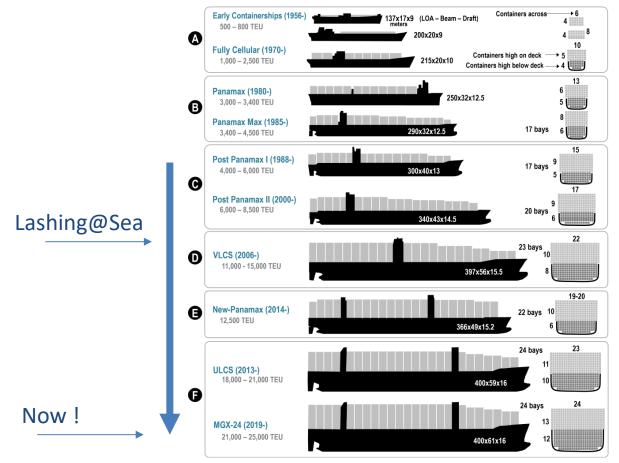
• A long history

- Drama's at sea
- Cargo on beaches

Also previous projects / 2006-2009

LASHING

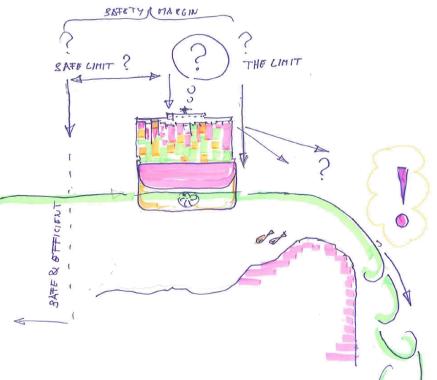
SEA



NYK Argus (Post Panamax)

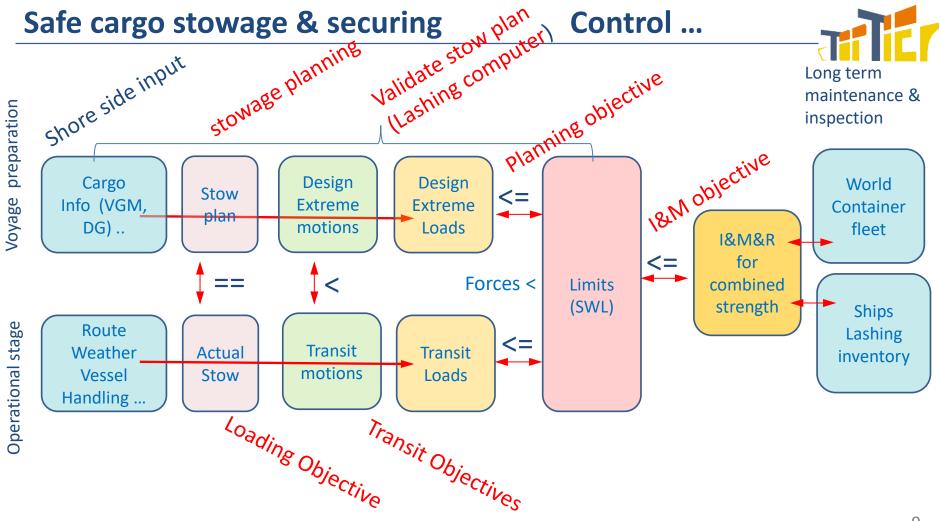
Mandatory verification of the gross mass (VGM) of packed containers (IMO MSC session 17-21 November 2014)

Big increase in containership size in recent years



Source: The Geography of Transport Systems

• Designed to be safely operable !



Have a "designed" (fixed)

- **Container capacity plan** -> max volume and types
- **Securing arrangement** -> safe working loads

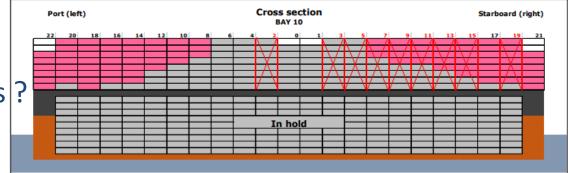
Operational – day to day - practice :

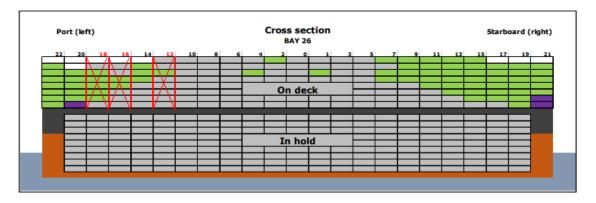
- Plan and load max cargo that:
 - "safe working loads are not exceeded in worst expected conditions"
- Operate vessel that worst expected conditions are not exceeded
- Inspect & maintain containers and lashings for assumed strength

- Review current practice
- Incidents and gap analysis
- Crew questionnairs
- On board surveys

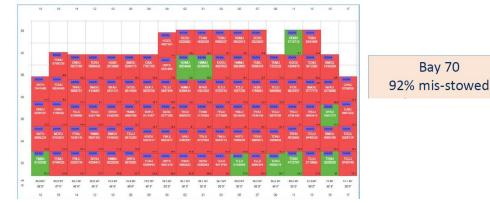
•

. . .


- Terminal workshop
- Strength testing lashing container equipment
- Model tests extreme rolling
- Large motion bridge simulator tests parametric roll
- On board measurements
- High tier stack model test campaign MTI
- Evaluation of high fidelity and operational solvers
- Container flexibility measurements
- Many discussions on legislation around CSS



- Lashing SW ..
- Planning target ..
- What are real margins ?



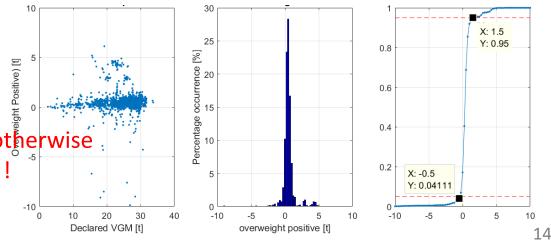
Stowage positions

- Average over all surveys 10% !
- Approval stowplan unreliable
- Uncontrolled / potentially unsafe
- How does this happen
- How to improve

Third deck stow survey 25th September 2021

Fifth deck stow survey 11th December 2021

	22	ANTU ANTU ANGONS	60+U 80+U 8316800	TEMU	CCCQU HONSING	BIROU 4740106	5000 1000	ERGJ EDEGJ	TONU 3817113	ETU 1008087	TEMU TEMU	TOBU RMITEO	ERSU UT-HERM	ECHLI ASHO757	POL 6457127	TILLU	TONI	398-6J 5813105	TEMPE TEMPE BETHETE	TEMU	EIRLI 8142828			
н		AD TROU SECENT	43 80940 9125/10	EMCU EMCU EMERCIS	TONU 1919/05	SOLU 115529	CAAU SARDOR1	AP	AT ESU ESU ESU	42 1000 102	43 8040 8040 85580	34 54000 TULU 7652736	TINE EXCRETE	E0+U 6291271	4040 90040 9001482	EITU BISSTIS	10-0 923108	AT FITU 1996425	43 TONE 2123067	GAQU BADU BADU BADU	AD MOU MOU MOUAL	ANY TRAFETS		
-	BURCU BURCU BURGUAT	EMCU RODOLIS	POU R245/19	TLLO TSIRTE2	TOHU SS1470	TOBU	TINU KOSOM	COLU S201/73	COMM COMMING MICOROD	A2 COMM ODCU ANDERC2	FIGURAN FIGURAN	ECHW Drisu datrzy	COCU 400033	COCU desetto	OOLU Segrifie	CO.U 5279713	Drau Attions	TCLU TCLU TESSERIE	ECORU BICORU BICORU	DEVU DEVU DEVE	TCLU MEMOSSIT	DRYU	SIEVU GKOLADA 4.3	Bays 53+54
-	TURU SSMITZ		4.079 679 1045/85	ESCONEJ		EGHU HSHETZ	1000	ACTION AND AND AND AND AND AND AND AND AND AN	38 00444 005440 8473128	SI CISLII CISLII STASABIT	20 00000 1785481	CIPAD GEORED	TLU 4425530	BEAU 4701752	UETU 1120605	TONU JEMESKS	MAGU 1271282	-	4.7 7 CBN 8508338	CANU DANU DISSAD	42 FOU 7311222	EISU 8534963	TOLU B011080	15% mis-stowed
ы	NONE TONU TONU	NUT N	TSBU KN1428	NUTS NOTO ORDERS	Election of the second	BITU BITU SITEROO	BITU BITU IW/BIHS	COLU COLU COLU	OOLU WK7130	COAN COAN COAN RETORE	34 00-00 5338798	34 00-144 5153604	TEMU	CSNU Nettria	OOLD HISHITS	FTAU 3211874	CCLU 7245514	10000 00000 10000070	BURN BOAU SUTTOR	1.000 1.000 1.000	NUTIN BEAU NINTIN	CNCU SHIDD	TXQU SNUSSS	10/01113 500 100
	are Tare Tare			ELTR Devid dettad	1000 1000 1000	LINA TOPO NACIONA	TORG Karries	SCHAR SCHAR SCHAR SCHAR	COMM COMM STTT252	SEDAN TEMU HISTORI	80 80 MM 91840 1254760	CO-NM COCU TRANSF2	COLU THEFT	Doctor Tomates	CD-U HOTHER	TO-U METERS	POU 7211045		1000 1000 1000				AJ NJEN Johu W10728	
8	COLU 4977381	0000		TIQU BSTN58	HAU FIAU 7200042	18 6,77e 00000 81986617	TORU HORDES	env Bitwa Bitw Colorit	00 HM PECU 7210614	MO-HIN ENCLU INCCU	BINOU MINOU	CHAU CHAU	TORU TORU	MOU INCU 11500	Tieda Tieda	and Kont Hallo	104	HILLING TEMU PORCTR	CELU ECTRAD	EITU 110738	EDHD MSK772	CAU SECON	NUTTUE	
я	ALTEN DRUU RUTER	254 875 1467334	ALE COLU ERIESSA	CINU REISEN	MUTRA FTAU HUMBE	TRLU TRLU	COCU BENETO	All Millions OCCU HITLION	TCNU SED0110	BI Mines Bill Ministro	BEAU BEAU HEIGHT	CRAJ 200500		49 49737 400001 400000	and and another	CIBAU 2877305	FBCU BST402	BIAL BIAL BIAL	PTAL 27970U	CRAU 191412	CARL CIARLI CITARGE	MARKA FECU SISTERE	444 (1894) (1894) (1896)(1	
н	DOM FOU Language	-		SCINI COLU 2415191	SCAR Table	30 0000 00720	ENCU SUTOR	MA BEMAN AMOU 1204015	Mines BEXU MISERS	SDaw Conto 1318085	SCING COLU 1885345	CED-HAM TULU 2POSING4	ABOVE TRLU TRLU TRUSSE	SIGNAL SIGNAL SIGNAL SIGNAL	ABASE TOPU UTIONS	TUBU S232750	TCLU TCLU	00-000 1040 3427211		CORN COLC COLC	50-44 60-44 60-4 3657950	DOLU DOLU 21/07804	NAME COPU Nº45578	
и	State COLU HE SHOL		10000 10000 10000	00000 00000 0100000	SDAN SDAN 2177787	COLU BILING COLU BILINGS	001404 0790 1044021	SEAR STU Searts	200 HBU 11 MU 42 55204	51 000400 19502 3911200	33 00-000 00070 1500000	COMMING ST	TRLU INCOME	CALL CALL CONT	ADAU ADAU ADAU	ECHU 20075	-	CED-MAR CALDU BNIR9564	43 COV444 COLV 1877952	24 201480 10040 1013713	at Comme Construction	CO-MAR EXTU CTERES	Mar Carel Carel	
n														2										
1.1	BAR MT TYP	Chawr Hr P	1368-01 187 P	INCOMP.	067 MT 1817	141.7 MT 641.9	151.97 97.97	-	HINT N'P	853 MT 91 P	MANT 81.07	73MT 91 0	16.5 MT	ELANT N'O'	77.3 MT 107 P	U SWT NY T	802 MT 107	NO P	1033 NT 107 P	172167 1629	HAS ME METER	SINT MP	94347 7012	

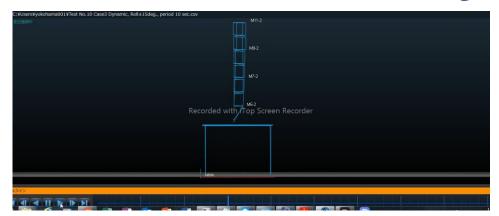

VGM reliability

- Difficult to acquire data
 - 10 months data carrier owned owned containers
 - 1 week PSC inspection terminal (AUS)
- Carrier owned :
 - 0.1% total nr "overweight"
- AUS:
 - Average overweigth ~0.5 t
 - Standard deviation ~1.0 t
 - Highest variability in 20 t range.
- Variations in VGM seem small !
- Anecdotes & incidents suggest otherwise
- 0.1% much more than 0.0001 % !

3.35	million units
2363	units
579	units
40720	units
	2363 579

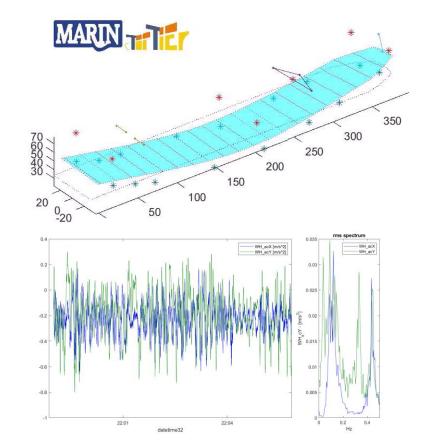
Only 0.09 % of the total volume is found to be overweight. The boxes with missing declaration represent 1.2 % of the volume.

Container packing




Complex dynamics of stacks

Dynamic effects missing in calculations No harmonized approach



Dynamic interaction Cargo – Hull girder

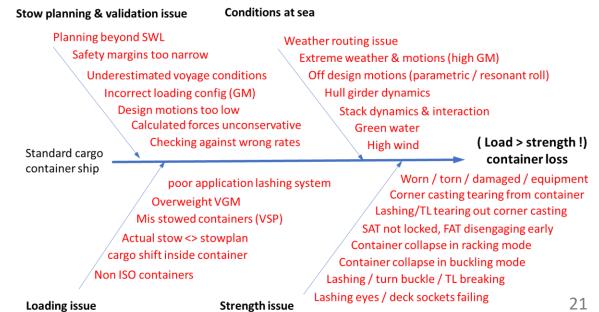
- On board measurements
- Clear hull girder dynamics
- No indicators / Limits / guidelines ..

Lashing gear & container condition



• How to inspect and maintain the huge numbers of parts?

Parametric roll

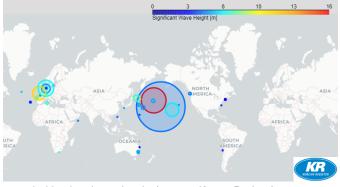

- Experiments on large motion simulator MARIN confirm
- Recognizing precursors of param roll is hardly possible without decision support or warning systems

Complete??

- Safety margins on strength side are tight
- Hazards to be handled or avoided -> Seem clear (for now)
- Technical options for improvement there for all except
 - Container stack dynamics -> least sensitive stowage ?? -> Operational guidance
 - Unified approach in service probabilistics loads and strength ?? -> standards & rules
- Regulatory frame work
 - IMO ungoing
- Industry adaptation ...

Key outcomes

MARIN


50% of losses from few but Major Container incidents

• Causes for this type of incident: Exceeding design conditions: large rolling motions in waves, stack dynamics and resonance.

50% of losses from many, but Modest Container incidents

• Causes for this type of incident: a range of factors, such as failure of container material or lashing material, overweight cargo, or shifting of cargo in the container, in combination with heavy weather.

Goal: Develop actionable guidelines aimed at reducing the risk of container loss at sea

Incident location and scale (courtesy Korean Register)

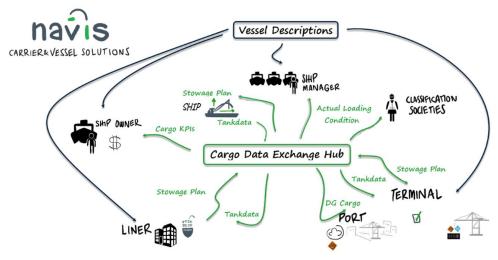
Operational Process Issues

Stowage Planning Underestimated Conditions Low Safety Margins

Conditions at Sea

Extreme Weather and Motions High Winds Parametric Roll

Causes of Container Losses


Recommendations to Prevent Container Losses

What is happening

. . .

MARIN

- Rules & Regulations are under review (IACS / IMO / ISO)
- Carriers are reviewing inspection & maintenance solutions
- Decision support solutions are becoming adopted
- System vendors develop digital integrated solutions

- Regulatory frame work evolves in IMO -> roles & responsibilities
- How could industry innovate in the meantime

- Decision support
 - Prevent excessive motions -> next session
- Digitalisation & control
 - Agreement digital reality real world
 - Enable focused inspection and maintenance containers & lashings
 - Second session Digital (connected) cargo eco system

Questions for now ?

www.marin.nl

Jos Koning j.koning@MARIN.NL

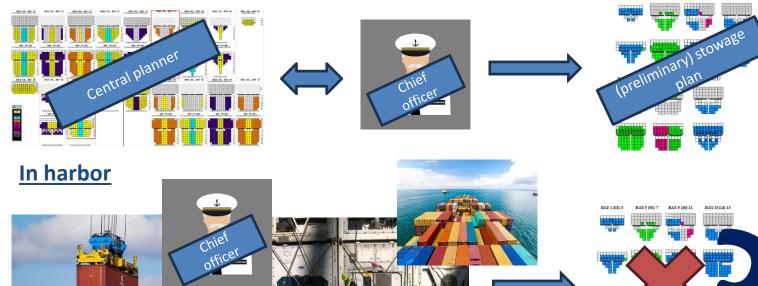
Contact:

AGENDA

Time (CET)	Торіс
09:00 - 09:30	Registration & Coffee
09:30 - 10:00	TopTier overview
10:00 - 10:40	Avoiding 'major off-design' container losses
10:40 - 11:00	Panel discussion
11:00 - 11:30	Coffee break
11:30 - 12:10	Avoiding 'modest in-design' container losses
12:10 - 12:30	Panel discussion
12:30 - 13:00	TopTier follow up pitches / Open floor
13:00 - 14:00	Lunch

Container loss at sea – onboard perspective Heike Diepeveen

The complexities of container shipping



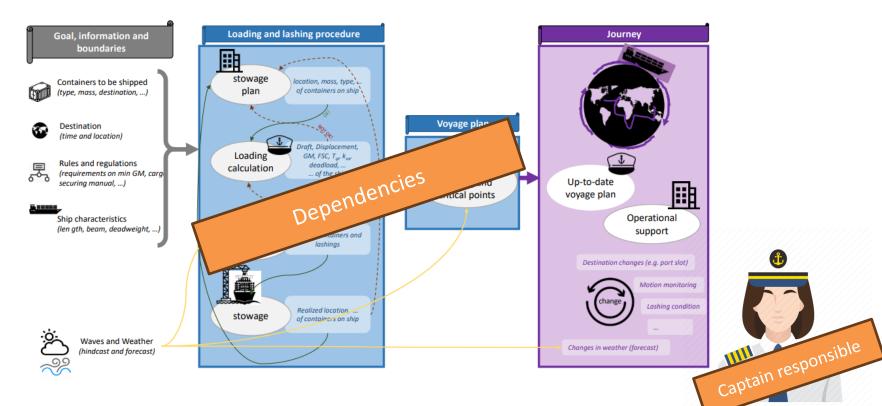
Pre-arrival

12

3 -

Crane operator

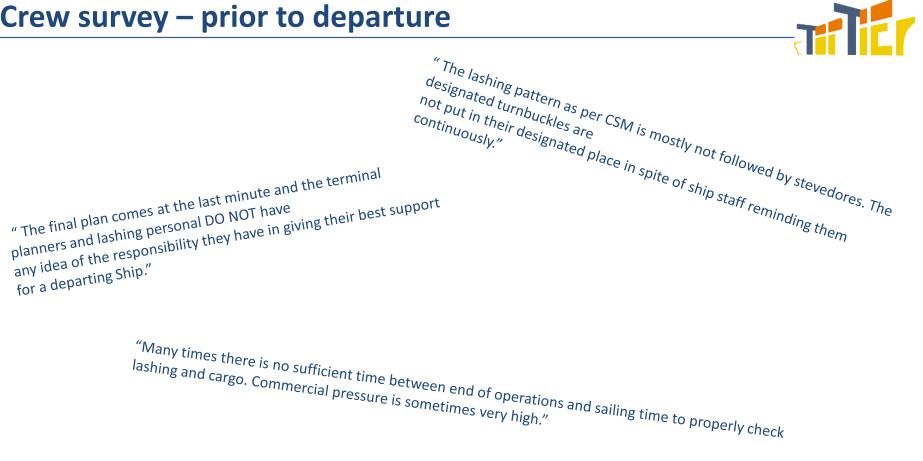
Stevedores



BAY 5 (06) 7 BAY 9 (10) 11 BAY 13 (14) 15

BAY 1 (02) 3

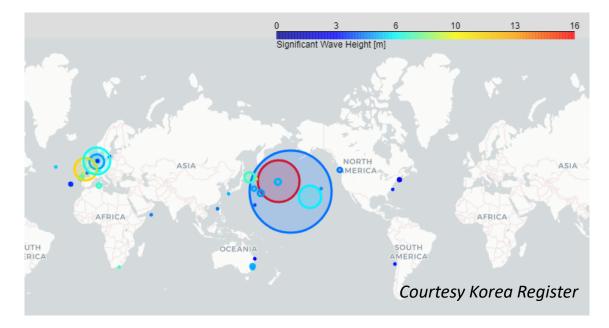
The complexities of container shipping



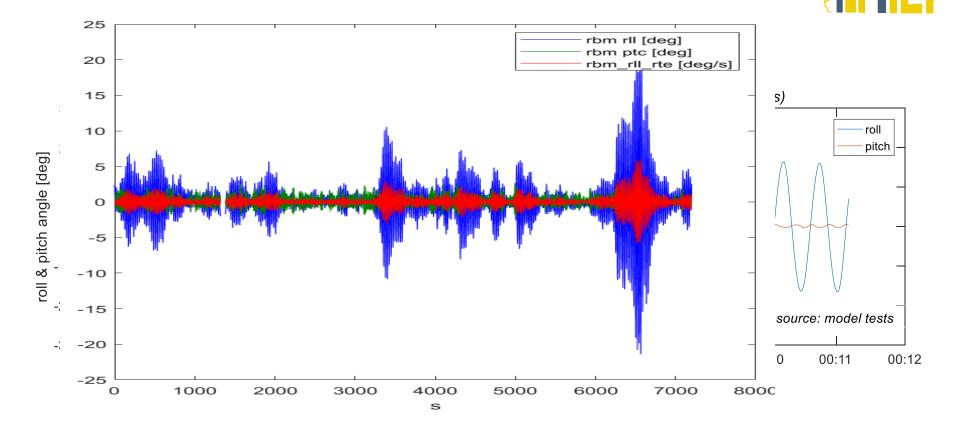
- Survey among 1542 seafarers
 - Prior to departure
 - During sailing
- 13 attention points
 - Prioritized together with TopTier consortium
 - Attention points divided over the different WPs

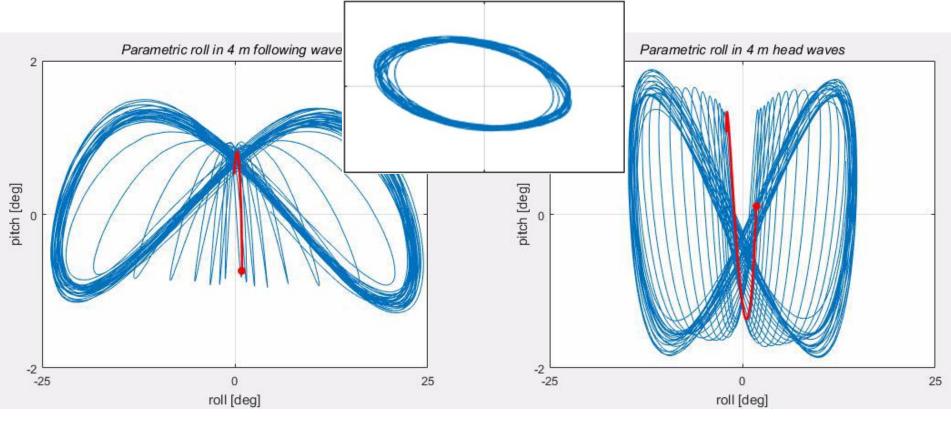
#	point of attention	TopTier	priority
1	It is difficult for ship's crew to keep an overview of the loading process of hundreds or thousands of containers. There is limited time, complicated communications, small influence on the process and limited control to implement a change.	mid	TopTier WG2
2	The condition of containers, especially corner castings, are considered a concern.	mid	TopTier WG1/WG2
3	Respondents indicate problems with automatic twistlocks. Multiple respondents have experienced this type of twistlock opening by itself during heavy ship motions.	mid	TopTier WG1
4	Masters find that terminal crew has a focus on fast rather than safe operation. Installation of lashing gear is not always done adequately by stevedores due to time pressure and lack of experience.	mid	TopTier WG2
5	The final loading plan is often only available in the last minutes before departure or after departure and the final loading plan often does not properly represent the cargo arrangement on and under deck.	top	TopTier WG2
6	Time pressure during the loading process is high. Roughly 25% of the respondents feel a commercial pressure to depart with potential risks in loading conditions and/or planned route	high	TopTier WG2/WG6
7	The roll natural period of the ship is an important factor in decision-making, yet the reliability and accuracy of the calculated roll natural period from the loading computer is limited.	high	TopTier WG5/WG3
8	Under way, crews operate in unpredictable circumstances with regard to weather and waves, with a lack of verifiable data about lashing conditions and loads, making decision making difficult	top	TopTier WG5/WG3/WG4
9	Predicting the response of the vessel to weather is hard, especially at night or in confused seas, and as a consequence crews may hesitate to take action.	mid	TopTier WG5/WG3
10	The vast majority of respondents claim to know how to prevent, recognise and act on parametric roll but very few ever experienced parametric roll. The actions described on what to do when it happens are diverse.	top	TopTier WG5
11	Navigation software tools are found to be helpful, however the availability and use of tools is not uniform.	mid	TopTier WG5
12	There is a large diversity in working methods, procedures etcetera, even within one company. Few best practices seem to be defined and there is limited opportunity to learn from each other.	top	TopTier WG5
13	Captains appreciate being informed by the crew when anomalies are found. It is, however, not that common, which is a cause of concern for captains.	low	Individual Companies

Crew survey – prior to departure

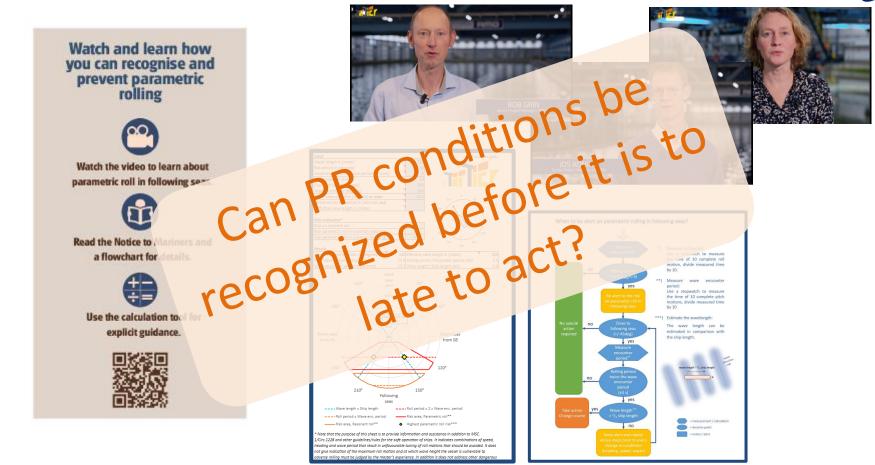

Crew survey – during sailing

"Vessel Master had neglected weather forecast in order to follow vessel schedule. The vessel goes through developed Low pressure with a maximum speed, late in the night start experienced heavy pounding and signs of parametric rolling had occurred. There was two pitch cycles for each roll cycle and maximum roll always occurs when the ship pitches down. Quite unexpectedly, the roll angle increased from a few degrees to over 30 degrees in a few cycles". "Will be good to have sensor with Roll period calculated automatically" "I sometimes consider it too technical or would say too little information is being given to the ship with regards to the roll period and lashing loads. Some sort of guidance is to be given or softwares to be delivered to allow ships to monitor their progress across oceans in real time conditions and how the roll period could actually impact the lashing onboard."


Incident investigation

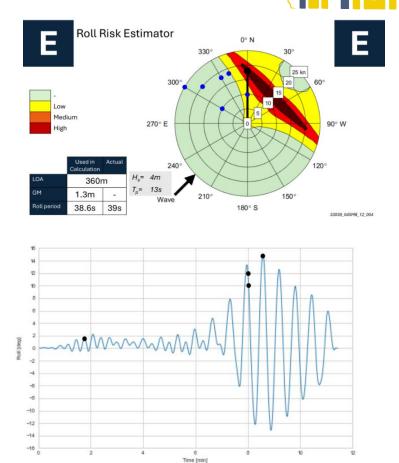

- 44 Incidents evaluated
- Involving 9824 lost/damaged containers (5% in 6 incidents)
- Related to large roll motions

Parametric Roll – When does this happen?

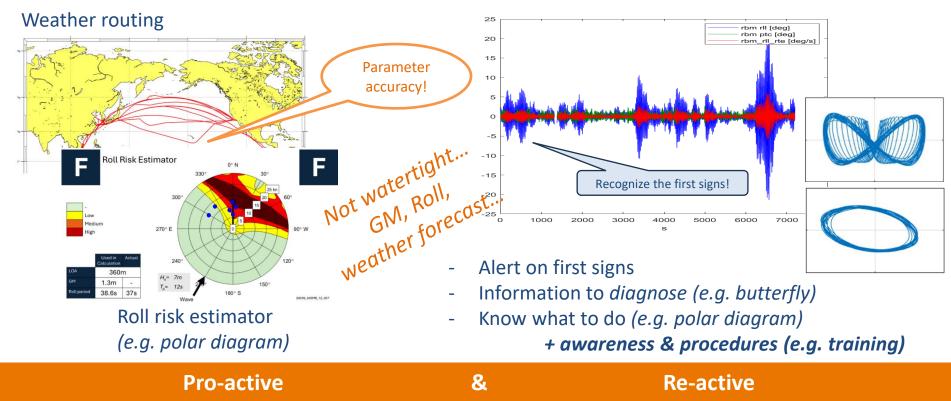

It's all about phasing..

Beware of parametric roll

Moving base experiment


- 15 captain, first/second officer
- Watchkeeping
- With/without roll risk estimator

"Operational guidance should be in place if parametric roll is assumed to be avoided by the seafarer."


Pro-active & Re-active

Based on the debriefing discussions....

Prevent parametric roll

Decision making pattern 1:

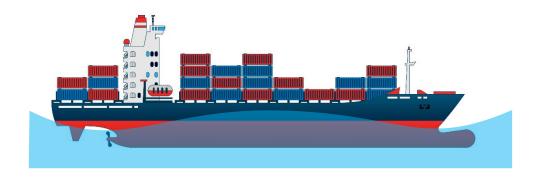
- **Observe:** the participant looks at all information available to him/her to reach level 1 situational awareness.
- Orient: the participant tries to get an understanding of the available information. The participant sees the roll risk in the polar plot and addresses to be more vigilant. The participant proceeds to observe the ship behaviour through the outside view, inclinometer, and their own feeling.
- **Decide:** the participant observes that the roll angle of the ship is increasing. The participant looks at the polar plot to see what course and/or speed changes would bring the ship into safer conditions.
- Act: the participant changes course and/or speed.

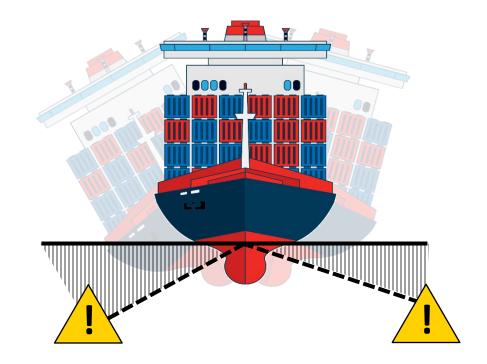
Decision making pattern 2:

- **Observe:** the participant looks at all information available to him/her to reach level 1 situational awareness.
- Orient: the participant tries to get an understanding of the available information. The participant sees the roll risk in the polar plot and addresses the desire to avoid these conditions.
- **Decide:** The participant decides to take action right after seeing the polar plot to avoid unsafe roll angles.
- Act: the participant changes course and/or speed.

Avoiding major off-design container losses

BLUE WEEK MARIN WAGENINGEN


Realtime Parametric Roll warning system



ENGINEERED

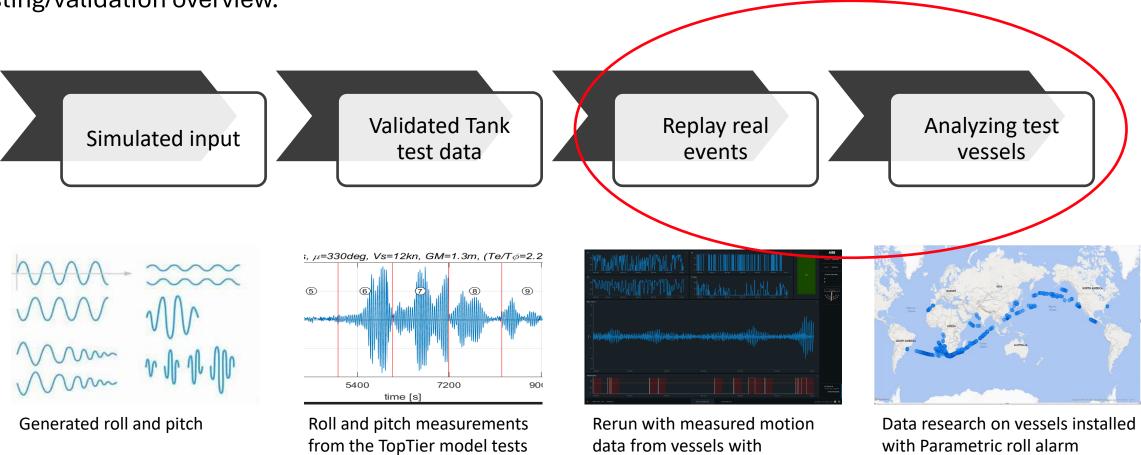
Parametric roll prevention What is parametric rolling?

- Vessel's roll motions increase due to varying stability in combination with wave encounter period matching half the natural roll period
 - The stability varies due to the wave crest passing alongside the vessel, in following and head seas
 - The wave shape follows the vessel geometry and additional pitch motions may increase the wet surface further, causing a periodic increase and decrease of stability
 - If the wave period is half of the natural roll period, the roll motion can amplify during each roll cycle
 - The amplitude can get excessive quickly to 20+ degrees within 10 cycles.

- Since 2009, CMA CGM fitted its owned vessels with capacity over 3000 Teus with Octopus on board. With currently 200+ vessels installed.
- A DMAIB investigation on parametric roll event and the <u>Marine</u> <u>report</u> state :

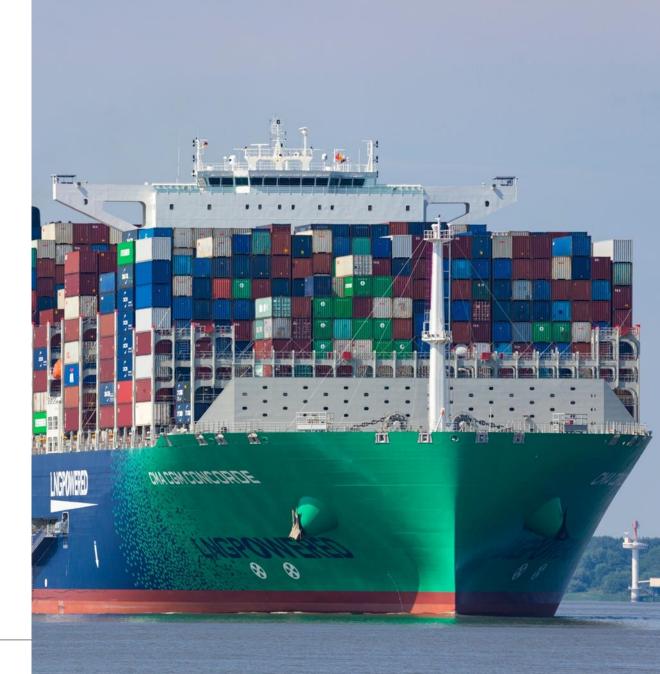
"Detecting risk of parametric resonance rolling based on forecasted sea conditions can be problematic as forecasts are encumbered by uncertainty. No matter how automatized and detailed the onboard tools for monitoring parametric resonance are, they are prone to the uncertainty of the forecasts which make them unreliable as tools, unless a broad risk margin is applied. DMAIB encourages companies and authorities to explore and test options for predicting resonance effects that are based on real-time conditions rather than forecasts,"

- 2020/2023 CMA CGM FLEET CENTER INITIATE a Doctoral Thésis Probability of occurrence of parametric roll on a predefined sea state.
- In 2024 in cooperation with ABB, introduction of the first tool to predict parametric roll in real time, based on the ratio of the roll period over the pitch period.



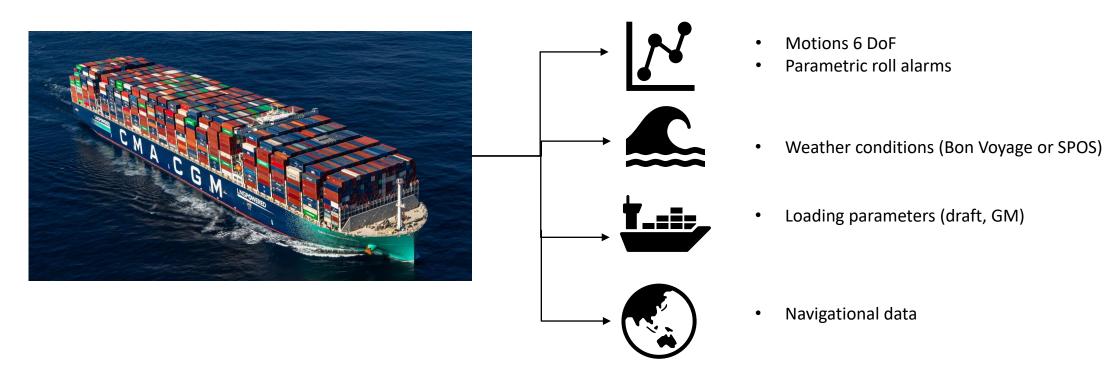
Testing/validation overview

Testing/validation overview.

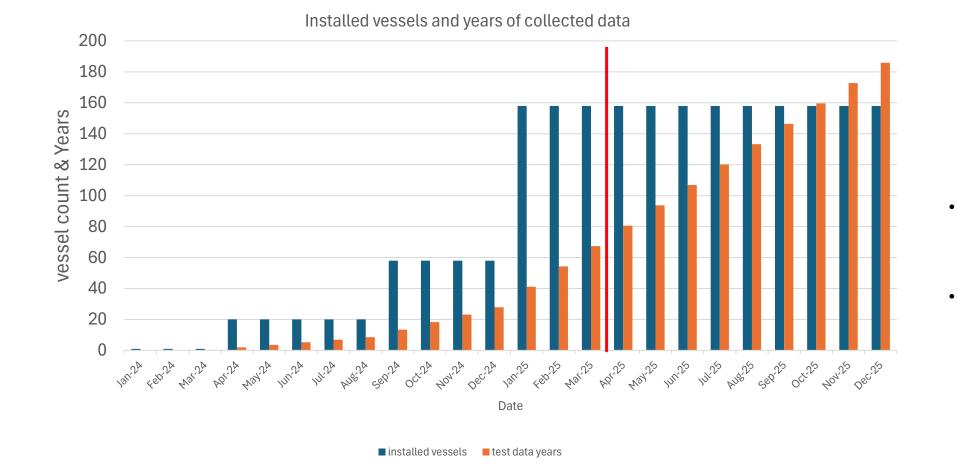

parametric roll

Parametric Detection System

Parametric roll


Computer with detection algorithm

- Motion sensor on bridge for Realtime measurement
- Additional Connection to:
- 1. navigation (GPS, Gyro)
- 2. Loading computer for draft and stability
- 3. Weather routings system for wave conditions


Data collection

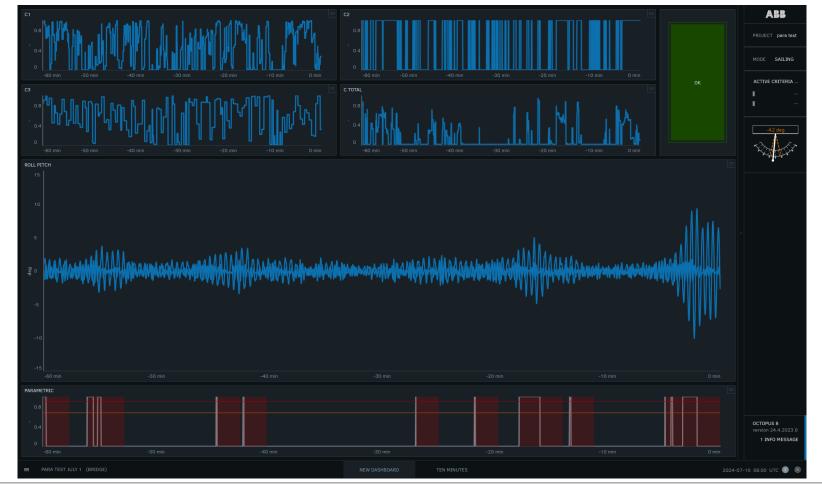
General setup

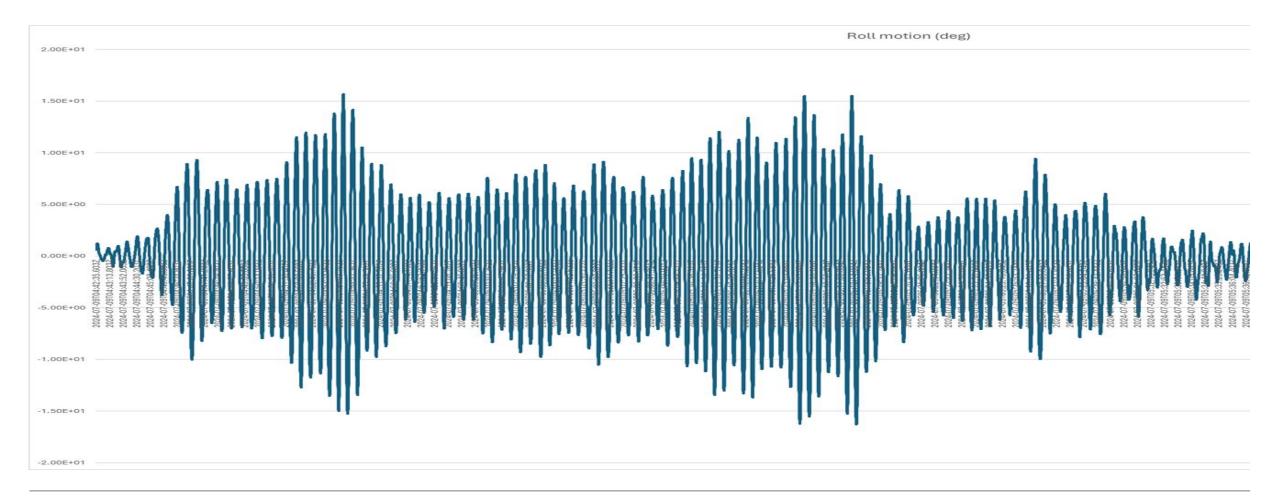
Data collection with active parametric roll detection

Installed vessels with Parametric roll detection and research data

- Current research database contains 60 years of operational data.
- Next year estimate: 180 years of data available.

Replay real events

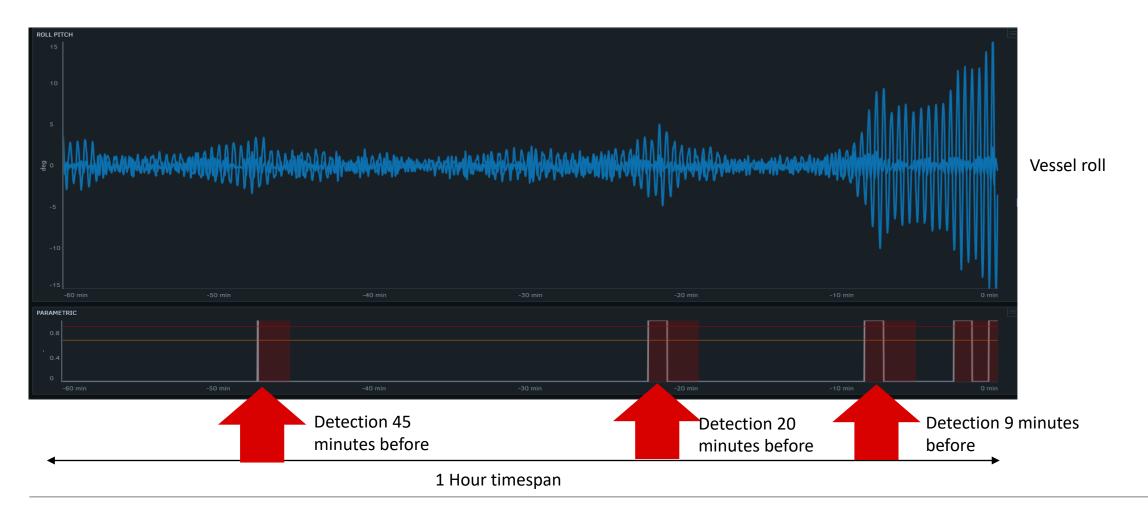

Investigation of early warnings on vessel behavior.


Realtime vessel data where motions have been recorded during an events.

-Is the event detected?-Are there warnings upfront?-Algorithm tuning

All events where parametric roll was detected also delivered warnings in the hours before the event.

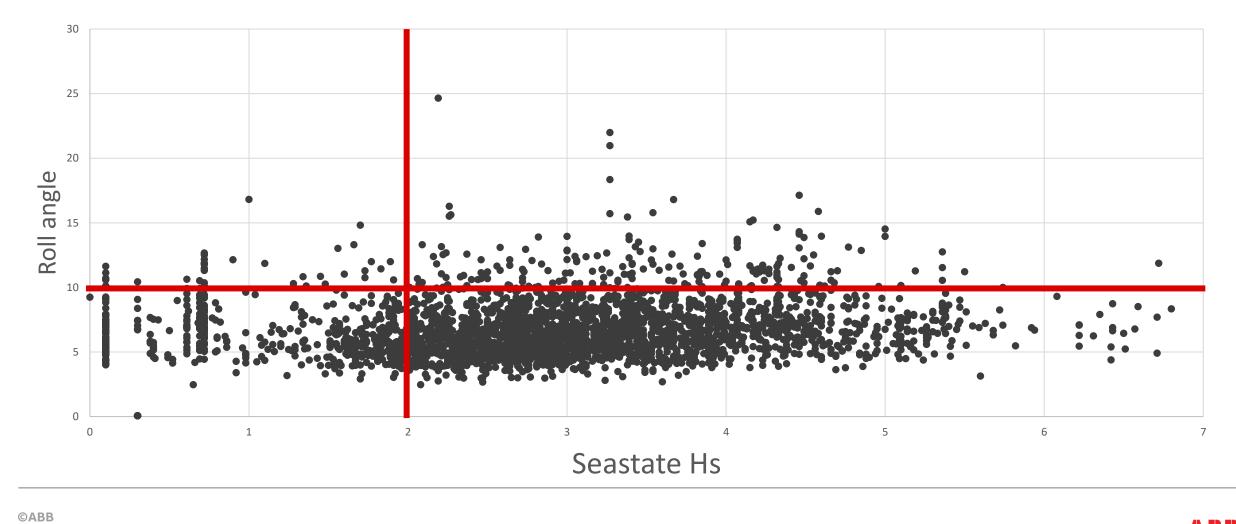
Vessel in parametric roll



ABB

©ABB

April 14, 2025 | Slide 9


Alarms identified before high roll

Realtime Parametric Roll warning

avoidance zone when parametric roll is detected

Learning from monitored data

Fleet risk assessment, vessel class dependent risk overview, voyage risk indication

14 minutes parametric roll/vessel/year		
	under 10 degrees of roll	above 10 degrees of roll
under Hs 2 meter	15.7%	1.8%
above Hs 2 meter	74.1%	8.4%
	♥	
	ssel per year in high param utes per year in high risk p	

Locations of parametric roll alarm, 60 operational years

Note: Trial vessels have been selected on increased risk by passage and season.

Chance of High parametric roll in time: 1:500.000 In this picture represented by the weight of the paint of the waterline.

Avoiding major off-design container losses

Off design container loss is a risk:

• A captain has a small chance to encounter extreme Parametric during his career:

1 out of 66 Captains

- A container ship during its operational life: 1 out of 40 vessels
- A container liner with 40 vessels: once per 25 years
- A major container liner:

Every 1.5 years

Why is there an airbag in my car?? I have never used it.....

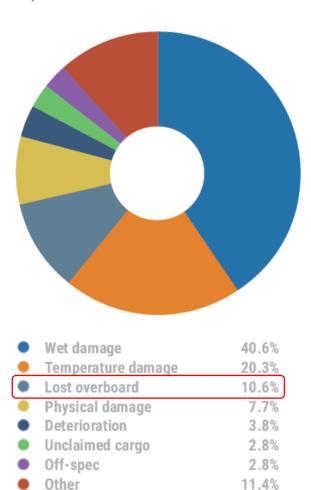
Why has my car an airbag? I have never used it.....

TopTier JIP Open Meeting, 8 April 2025

Containers lost at sea: The role of marine property insurers

Hendrike Kühl Policy Director International Union of Marine Insurance Agenda

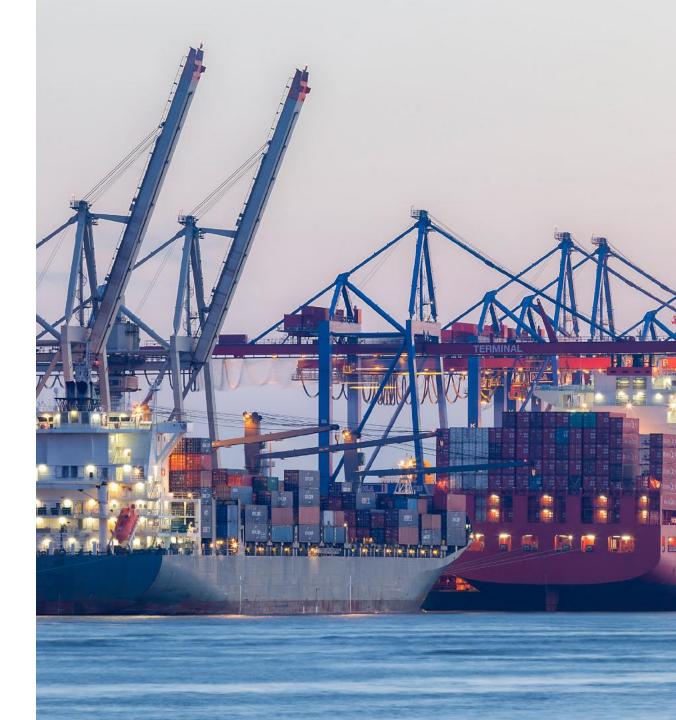
- 1 Some figures
- 2 TopTier and IUMI
- 3 Going forward



Marine insurers must have data!

Claims types by volume and costs Type of claims by volume P&I cargo, container, 2015-2019 Cost =>USD 5,000 - uncapped As per 14/8/2020 27.9% Wet damage Temperature damage 21.9% Physical damage 18.1% Unclaimed cargo 5.6% Off-spec 4.7% 4.2% Lost overboard Deterioration 3.3% Uncategorised 14.3%

Type of claims by cost P&I cargo, container, 2015-2019 Cost =>USD 5,000 - uncapped As per 14/8/2020



Source: The Swedish Club, Preventing the loss of containers at sea, 2020

TopTier & IUMI

- Concerns raised due to expensive claims
- Marine insurers = one part of the puzzle
- ✤ Cooperation with all stakeholders \rightarrow JIP
- Extreme motions = one priority

Going Forward

 \rightarrow Extreme motions = priority!

→ But: All root causes must be addressed

→ Mandatory rules & enforcement

→ TopTier findings to inform regulatory process

Thank you

Hendrike.kuehl@iumi.com

AGENDA

Time (CET)	Торіс
09:00 - 09:30	Registration & Coffee
09:30 - 10:00	TopTier overview
10:00 - 10:40	Avoiding 'major off-design' container losses
10:40 - 11:00	Panel discussion
11:00 - 11:30	Coffee break
11:30 - 12:10	Avoiding 'modest in-design' container losses
12:10 - 12:30	Panel discussion
12:30 - 13:00	TopTier follow up pitches / Open floor
13:00 - 14:00	Lunch

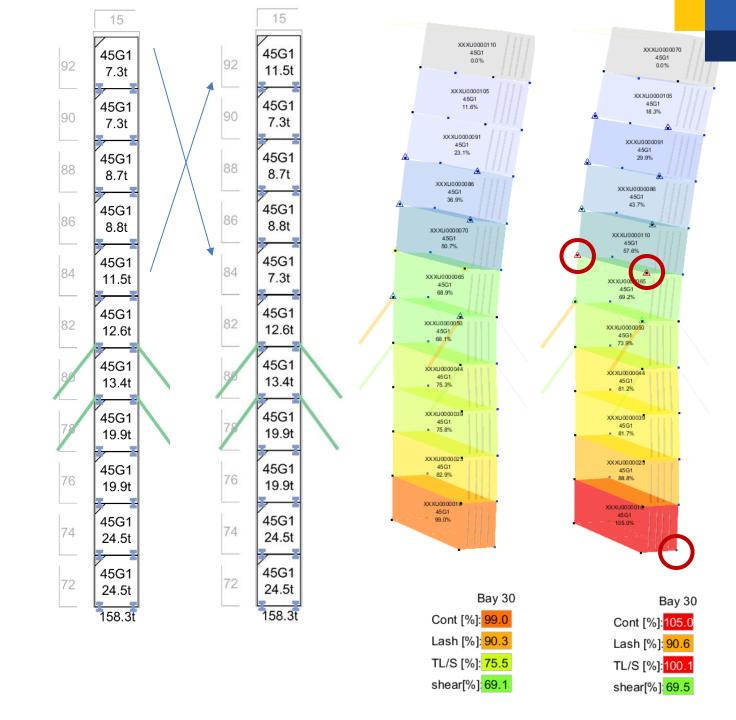
REPORTAGE

Waar komen al die duizenden tuinkabouters op het Amelandse strand vandaan?

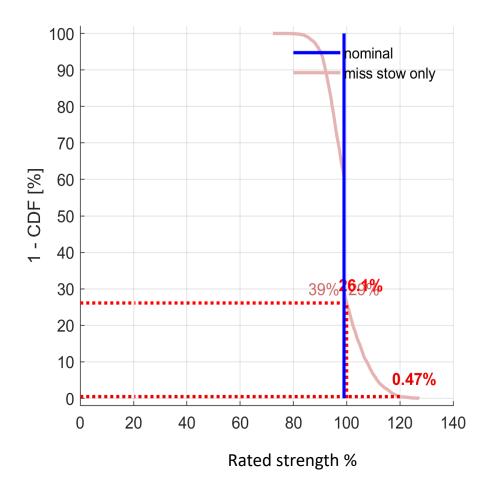
Al jaren vinden jutters op Ameland tuinkabouters op het strand. Het gaat om duizenden exemplaren. Niemand weet waar ze vandaan komen. Een zoektocht naar hun herkomst leidt via een Zeeuwse tuinkabouterverzamelaar naar de tuinkabouterhoofdstad van China.

Op 9 februari 2006 was de Mondriaan van het Britse Southampton onderweg naar de haven van het Duitse Hamburg toen het rond 6 uur 's avonds zo'n 15 kilometer boven Terschelling in de problemen kwam. Het was slecht weer waardoor er volgens de kustwacht 58 grote containers (40 voet lengte) overboord gingen.

deVolkskrant 11 december


SOURCES OF LOSS

- Out of design motions (like parametric roll)
- Mis-allocation of containers
- Degradation of containers and lashing material
- Small safety margins (corner post strength)
- Missing Twistlocks/lashes


SOLUTIONS

- Lots of data available
 - EDI/BAPLIE Loading file
 - Ship motions
 - Wave and weather forecast
- Rerouting
- Good seamanship
- Up-to-date Tools

OPPORTUNITIES

Corner post compression

Bay 82 Bay 78 Bay 74 Bay 70 Bay 66 Bay 62 Bay 58 Bay 54 Bay 50 Bay 46 Bay 42 Bay 38 Bay 34 Bay 30 Bay 26 Bay 22 Bay 18 Bay 14 Bay 10 Bay 6 Bay 2

Cont [%]: 41.0	38.9	53.5	44.2	45.6	79.9	61.0	47.3	68.6	77.3	63.9	44.9	63.4	51.2	53.2	48.8	63.3	52.5	55.3	34.1	24.4
Lash [%]: 33.2	28.8	96.3	87.4	33.7	0.0	77.8	58.6	50.1	96.7	79.3	99.6	79.0	95.1	49.8	49.9	36.1	50.0	30.2	38.5	20.3
TL/S [%]: 10.1	0.0	40.2	35.5	6.3	0.0	31.7	1.0	16.5	40.4	31.2	40.5	21.8	100.0	14.6	8.4	6.9	100.0	1.0	0.0	0.0
shear[%]: 36.3	38.0	35.4	38.5	29.3	10.9	40.7	36.9	31.7	35.1	42.2	37.2	49.4	47.8	27.9	29.0	35.3	49.3	32.2	30.3	25.6

GBMS System on board

System Capabilities Intelligent Sensor Network

One or more sensors onboard measure real-time ship motions

Advanced Computational Analysis

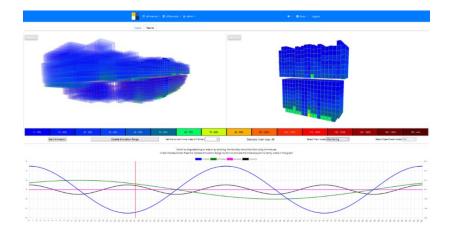
High-precision force calculations for container stacks **Seamless Visualization**

Accessible from any onboard computer

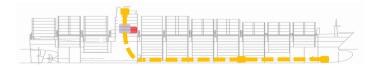
Shore-Based Connectivity (Optional)

Remote monitoring & expert guidance

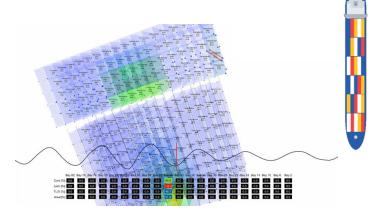
Comprehensive Data Storage

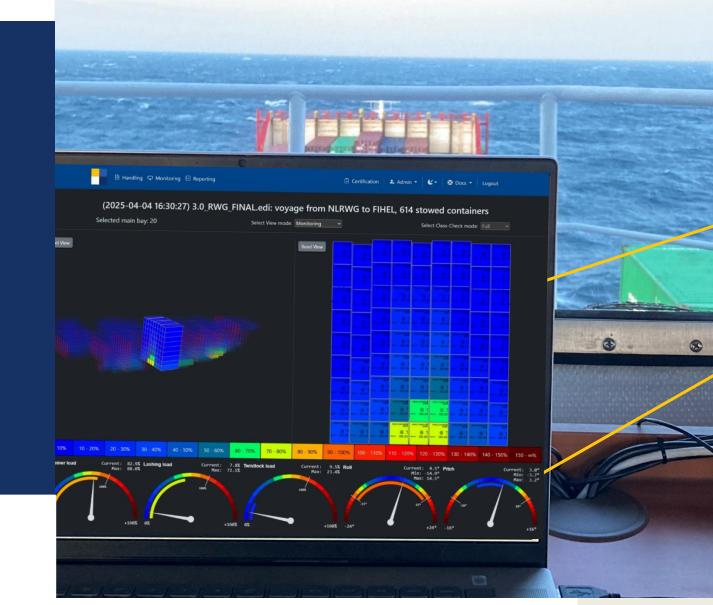

Enables hindcast analysis & compliance reporting

Effortless Installation


- Minimal Downtime
 Only 4 hours during routine port stopovers
- Flexible Deployment Can be installed anywhere on the ship
- Non-Intrusive Design No sensors required on containers

Strategic Impact

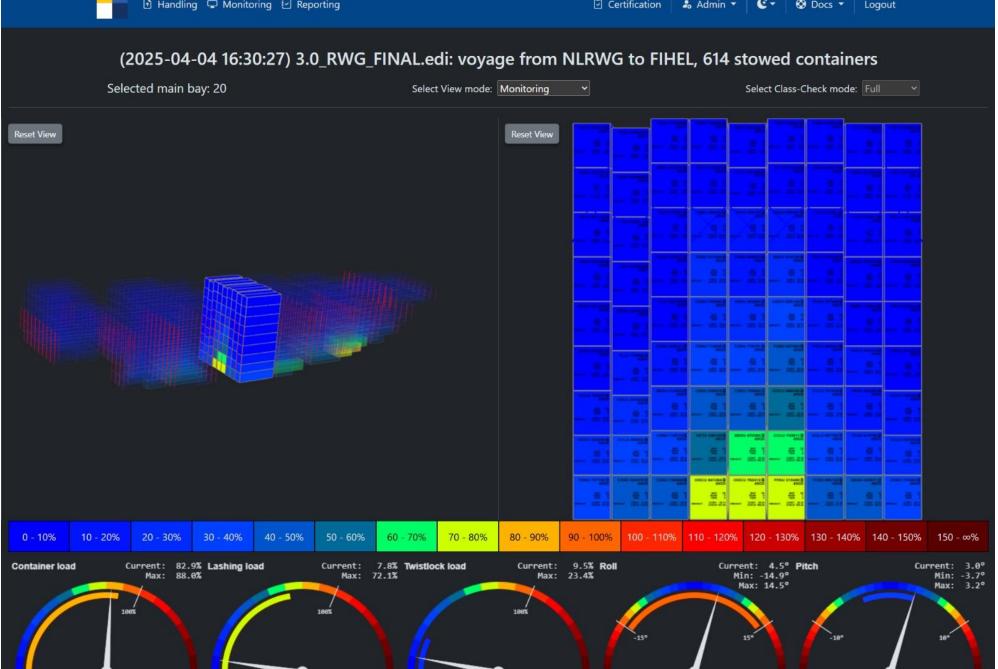

- Enhancing global maritime safety & sustainability
- Empowering data-driven decision-making for resilient supply chains
- Aligning with UN Sustainable Development Goals (SDGs) on safe & efficient shipping



- Intranet server for UI and real time calculation
- Primary sensor
- Optional additional sensors

SENSORIUMC

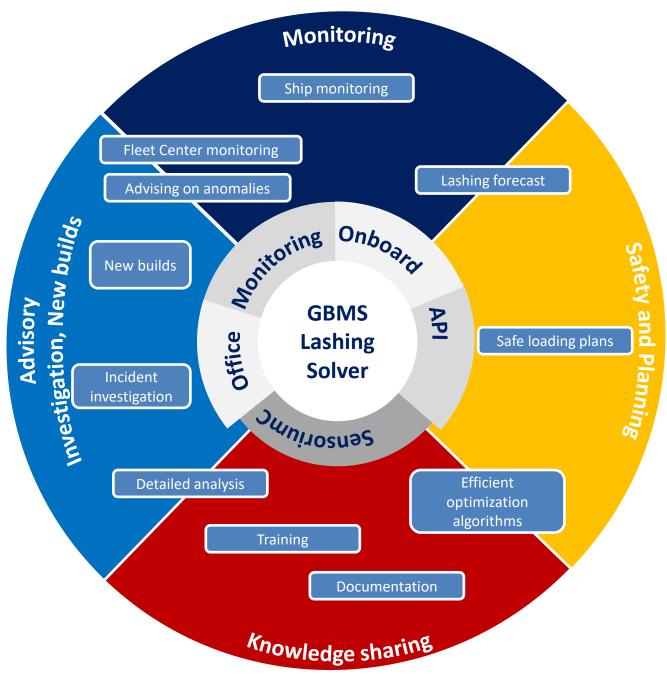
- Real-time monitoring of forces between the containers
- Direct visualization at the bridge
 - Logging of ship motions for hind-cast analysis.
- Single-sensor solution


 Crew is timely warned and can take evasive action

0%

+160% 0%

+24° -16°


+16°

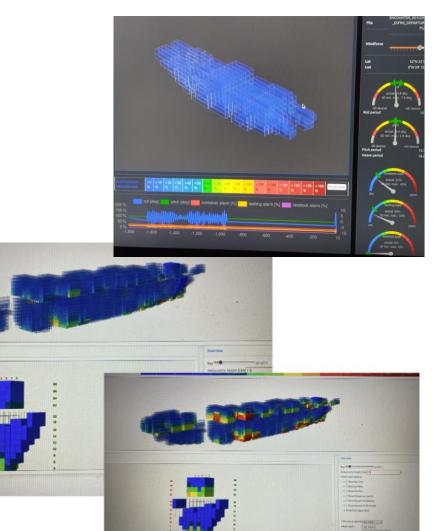
+160% -24°

+160% 0%

OVERVIEW

Crew experience

Dear All,


While we are crossing Biscay bay heading to North, from Ferrol, Spain to Dublin, Ireland. Weather southerly wind force 8 bft (gusts of 9 bft), swell SW 4-5 mtrs, waves 4-5mtrs. With a cargo load of 7108 mT, a GM that is 1.00 metre and rolling period of 14.6 seconds.

Our experience with GBMS container monitoring system is amazing.

The program shows the real time movement of our vessel on the screen as we monitor the container load, lashing and twist lock load. Very significant source for route evaluation to insure the safety of cargo and particularly in stormy condition.

Please find attached some pictures and video.

Best Regards, Nilo - Captain - MV Encounter

GBMS

Reducing container damage and loss

Thanks for your attention!

Why Digitalize Lashing Gear?

- Manual, blind, and disconnected components
- No real-time inventory or condition tracking
- Failure risk with safety and operational impact

Some of Today's Pain Points

- Lost or misplaced twistlocks and lashing bars
- No real maintenance logs visual checks only
- Crew size and time make full inspections unrealistic
- Logs often don't reflect the actual condition onboard
- Ships sail without knowing the true lashing status but still sign off as "safe state"

The Smart Future

- Digitally enabled twistlocks and lashing gear
- Cloud-based inventory and maintenance tracking
- Each twistlock or other lashing component becomes part of a digital twin – enabling real-time monitoring and lifecycle tracking
- Predictive maintenance and enhanced safety

Stakeholder Value – Beyond Operations

- Carriers– Inventory control, safety, operational efficiency and visibility
- Crews Faster workflows, less guesswork, safer working conditions
- Fleet Managers Remote condition visibility, global lifecycle tracking
- Ports/Terminals Faster handovers, smoother coordination, digital audit trail
- Insurers Access to hard data supports lower premiums and risk-based pricing

A Digital Twin

- Real-time data from tagged lashing gear
- Centralized cloud view of all lashing assets
- Maintenance and lifecycle records always available
- Supports smarter inspections, less downtime

Data as a Strategic Asset

- Actionable data improves maintenance and inspection workflows
- Shared visibility enables smoother stake holder coordination
- Lifecycle logs support safety audits and compliance checks
- Insurers can use data to reward low-risk, data-rich fleets
- Lashing gear becomes part of your digital ecosystem

Maritime Supply Chain Risk Awareness

Prepared for MARIN Solutions April 2025

Overview & Structure

- **1. Introduction**
- 2. Risk Assessment & Preparedness
- 3. Safety Responsibilities Overview
- 4. Areas for Improvement
- 5. Annexes & Discussion Points

Introduction

"The new container cargo supply chain is clear. Consignors want transparency, predictability, and availability in the chain."

Added to these requirements is a new demand: trusted partners

Consignors or Shippers and Freight Forwarders expect:

Client Expectations

Consignors and Freight Forwarders require transparency, reliability, and timely access across the supply chain

Digitalisation & Efficiency

Digitalisation is key to improving efficiency, reducing costs, and supporting sustainable logistics.

Geopolitical Pressure

Rising geopolitical concern demands are pushing the logistics sector towards more secure operations.

Digital Consultancy as Standard

Digital Consultancy is becoming a core expectation in freight forwarding services.

Driving Industry Change

Consignors, Shippers and Forwarders play a leading role in steering the industry to meet evolving customer demands.

Cargo is leading.

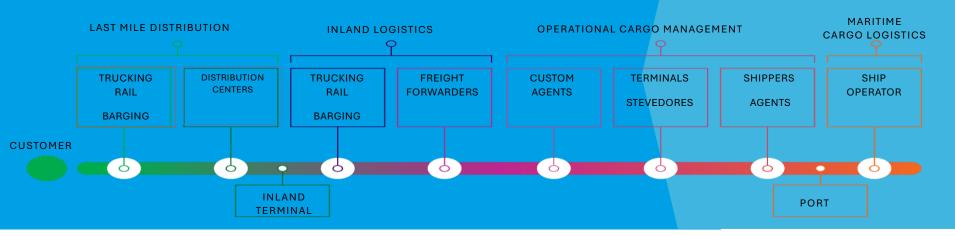
What remains critical in the Supply Chain ?

- 1. Heavy Incidents and Calamities in the Maritime Part of the Supply Chain
- 2. Risk Management of the Maritime Part of the Supply Chain.
- 3. Environment Safety Security Sustainability
- 4. Transport Transparency
- 5. Integrated Management System between Supply Chain Actors.
- 6. Efficiency Costs

Today's Objectives:

- Protect human life, property, and the environment.
- Strengthen process discipline and accountability.
- Improve and re-design integrated processes in the maritime industry.
- Create [(hi-tech) + (digital) + (smart) (human error)] = cost & efficient cargo logistics

Some Direct Practical Examples:


- a. Standardised and Transparent Supply Chain Risk Assessment
- b. Human Factors Monitoring (Training, Drills, Certifications, Learning and Awareness)
- c. Advanced digitalisation
- d. Emergency Response and Preparedness
- e. Enhanced Equipment Inspections (Containers, Lashing and Securing)
- f. Controlled Maintenance Monitoring Programs

Risk Assessment & Preparedness

- 1. Identify Key Hazards & Vulnerabilities
- 2. Use and Develop Industry Standards
- 3. Develop and Implement Tools
- 4. Ensure Education and Training for all supply chain staff
- 5. Secure essential resources and data verification tools for secure communication
- 6. Digitalisation.
- 7. Smart Tools, Sensors, Dashboards, Tracking Tracing, Automated Reports

Safety Responsibilities Overview

- 1. Consignors: Accurate information & VGM declaration
- 2. Loading Stations: Correct Packing & Securing
- 3. Transporters: Condition verification & safe transport
- 4. Terminal Ship Planners: Stowage Planning & Compliance
- 5. Ship Command: Vessel Compliance Checks & Cargo Compliance Checks
- 6. Ship Operator: Vessel Compliance, Planning & Cargo Compliance Checks

Areas for Improvement

- 1. Human Factor & Process Discipline
- 2. Digitalisation & Transparency / Implementation Global Cargo System
- 3. Equipment Inspection & Maintenance
- 4. Governance & Accountability / Including Competent Authorities
- 5. Integrated Management Systems with tools and functionalities
- 6. Real-time data availability between Actors
- 7. Certified Operators based on ITL standards

TopTier open meeting 8 April 2025

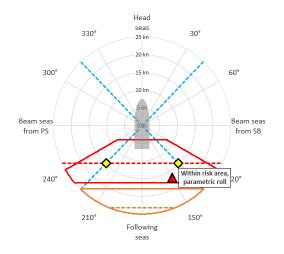
Time (CET)	Торіс
09:00 - 09:30	Registration & Coffee
09:30 - 10:00	TopTier overview
10:00 - 10:40	Avoiding 'major off-design' container losses
10:40 - 11:00	Panel discussion
11:00 - 11:30	Coffee break
11:30 - 12:10	Avoiding 'modest in-design' container losses
12:10 - 12:30	Panel discussion
12:30 - 13:00	TopTier follow up pitches / Open floor
13:00 - 14:00	Lunch

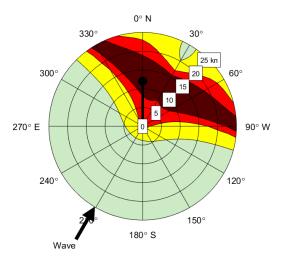
Please note there are only limited seats available and that you can follow the meeting online as well (<u>zoom link</u>). Register at <u>registrations.marin.nl/blueweek-2025</u>

Venue: MARIN, Haagsteeg 2, 6708 PM Wageningen

For questions; Toptier@marin.nl

TopTier Follow-up


Operational guidance Stay in-design and avoid off-design


The goal of this follow-up to TopTier is to mitigate the risk of extreme motions

We believe that collaboration among carrier companies, system developers, research institutes, training institutions, and others will accelerate this effort.

- TopTier showed that many factors contribute to loss of containers
- It is not easy to solve them all at the same time
- One of the easier short-term improvements is:
 - Operational guidance

TopTier increased knowledge on preventing extreme roll

- TopTier working group 3 and 5 focused on extreme roll
- 85% of the container loss/damage in incident review
- However, we should not forget the remainder...

Parametric roll bow out the ing link own lotal (00)									
(Partial) stack collapse	0%	-	-	0%	0%	1%			
Single (stern) bay collapse	2%	2%	1%	4%	3%	11%			
Multiple stern bay collapse	2%	-	1%	-	0%	4%			
Multiple bay collapse	11%	41%	23%	-	6%	81%			
Unknown	1%	_	0%	0%	2%	4%			
Total [%]	16%	43%	26%	4%	11%	100%			

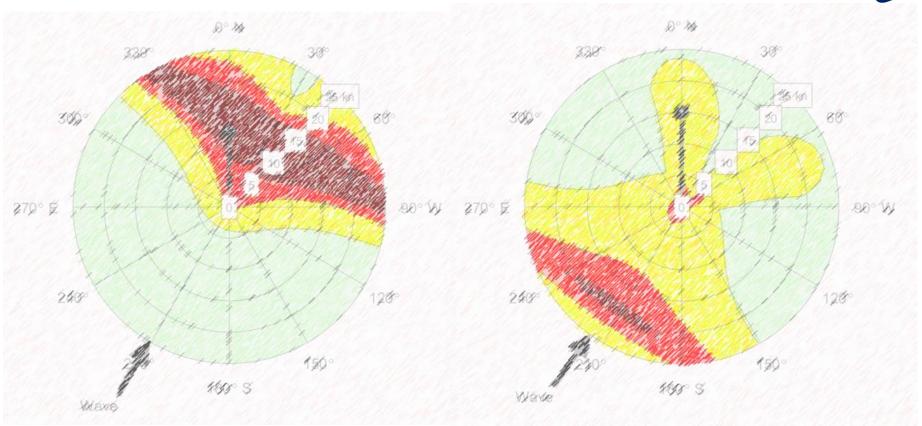
- Roll and transverse accelerations
- Vertical motion and accelerations
- Wind loads & wave impacts
- Slamming, springing & stack resonance
- Sensitivity & uncertainty
 - Weather forecast
 - Motion prediction
- Onboard
 - Crew awareness
 - Implementation
 - Required input

	Stay in-design	Prevent off-design
Pro-active guidance		
Re-active guidance		

- 1) Create parametric roll training course material (awareness and effective procedures)
- 2) Establish practical guidelines for Operational Guidance (to help tool selection and to help tool development)

Approach

- Use the moving base simulator
 - evaluate generic features of interfaces and generalized procedures
 - evaluate the effectivity of awareness training
- Use TopTier data
 - evaluate the effectivity of algorithms (incl e.g. false positives)


- With consideration of
 - Design motion (e.g. class or direct calculation)
 - SGISC operational guidance and MSC1228

- 2 years
- Kick-off Q4 2025 (Vessel Operator Forum)
- contribution 10-20 k€/year

Thank you

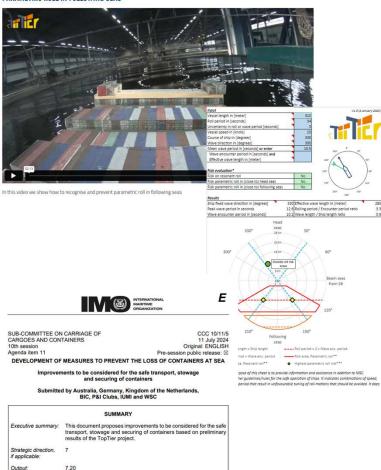
MARIN

For more info: <u>w.pauw@marin.nl</u> or <u>r.grin@marin.nl</u>

Public deliverables

Besides internal project deliverables some public information can be found on <u>TopTier | MARIN</u>:

- Video TopTier in-progress
- **Notice to Mariners** This information gives guidance on how to plan, recognize and act to prevent parametric rolling (videos, tool, notice)
- CCC 9/INF.25 19 July 2023 Update on the progress of the TopTier Joint Industry Project (JIP) on container losses
- MSC 106/INF.16 30 August 2022 Update on the progress of the MARIN TopTier Joint Industry Project (JIP) on securing container safety
- **Paper** TopTier, seakeeping and container cargo securing safety, J. Koning, Proceedings of the 18th International Ship Stability Workshop, 13-15 June 2022, Gdańsk, Poland 1
- Thank you note including 13 main points of attention from Seafarer perspective
- Status update January 2024
- **Report on Review of incidents** R. Grin, May 2022.
- Summary incident review and gap analysis J. Koning, June 2024.
- **CCC 10-11-5 11 July 2024** Improvements to be considered for the safe transport, stowage and securing of containers
- CCC 10/INF.17 11 July 2024 Review of incidents resulting in loss of containers
- CCC 10/INF.18 11 July 2024 Summary of incident review and gap analysis
- CCC 11 based on TopTier summary report → expected July 2025


PARAMETRIC ROLL IN FOLLOWING SEAS

Action to be taken

Related documents:

Paragraph 14

MSC 104/17/4; MSC 106/INF.16; MSC 107/17/12; CCC 9/INF.25, CCC 9/13/3, CCC 9/13/4; CSC.1/Circ.138/Rev.

TopTier is powered by: w seaspan TX MAERSK **ClassNK YANG MING** ABS WAN HAI LINES LTD. DNV.GL World Shipping **Hapag-Lloyd** WE CARRY, WE CARE. Council CHINA CLASSIFICATION SOCIETY KE 中國船級社 OREAN REGISTE GDV BUREAU Container Technology SAMSUNG HEAVY INDUSTRIES GERMAN LASHING INTERNATIONAL NS MARITIME **ROBERT BÖCK GMBH** navis GBMS **AMSA** Monohakobi **BETTER SHIPS, BLUE OCEANS** echnology Institute Technische Universität Hamburg