

Towards high Reynolds performance models

Douwe Rijpkema John Huisman

- Propeller series
 - K_{T} , K_{Q} , η_{O} as a function of Z, PD, BAR, J
 - Select propeller in preliminary design
 - Optimal rotation rate for given diameter
 - Optimal diameter for given rotation rate
 - BAR and Z usually pre-selected

Κ _T	Thrust coefficient
K _Q	Torque coefficient
η _o	Open water efficiency

Z	Number of blades	
PD	Pitch ratio	
BAR	Blade area ratio	
J	Advance ratio	

Propeller series, performance as f(Z, BAR, PD, J)

Propeller series, geometry as f(Z, BAR, PD)

- Summary propeller series MARIN:
 - 1937-1969: B-Series
 - Fixed pitch, non-ducted
 - Tested at various Re, faired and corrected for Re
 - 2018: C-series
 - Controllable pitch series
 - First CFD studies on transition modelling
 - 2023: F/Fc-series
 - Modern alternative to B-series
 - CFD analysis
 - Improved paint tests
 - 2024: Tripping JIP
 - Boundary layer tripping
 - Experiments + CFD at different Reynolds numbers

- F-series (150 propellers):
 - Standard series of fixed pitch propellers
 - Optimised for seven selected ship types
 - Tested in open water using QSO

- Fc-series (24 propellers):
 - Different blade design
 - Focus on higher demand for comfort levels, e.g. cruise vessels and yachts
 - Subset of F-series for Z, PD, BAR

	F	Fc
Z	5 (3,4,5,6,7)	3 (4,5,6)
PD	6 (0.6-1.6)	5 (0.8-1.6)
BAR	25 (5 per Z)	9 (3 per Z)
J	~2000 per prop	~2000 per prop

FC-SERIES

- Summary Fc-series fit
 - Limited number of data points
 - Evaluation by cross-validation approach
 - Comparison different (polynomial) models
 - Model selection

FC-SERIES FIT

Fc-series fit

Fc-series fit

- Main ideas:
 - Experiments with boundary layer tripping (turbulators)
 - CFD with turbulence models (without transition models)

- More similar Reynolds number regimes
- More consistent propulsion coefficients
- CFD at full scale for scale and roughness effect corrections
- Exploration of best modelling approach
- Individual propeller fits
 - -> Propeller series fits
 - -> Generic correction fits for concept design

TRIPPING JIP

Efficiency at different Reynolds number regimes

CFD propeller performance at different Re

- Experiments
 - Multiple model-scale Re
 - In-behind (η_r)
 - Open water efficiency (η_o)
 - Hydrodynamically smooth

- CFD simulations
 - Model-scale and full-scale Re
 - Hydrodynamically smooth and rough
 - Equivalent sand roughness (k_s) at full scale Re

- Propeller series
 - KT, KQ = f(J, Z, BAR, PD)
 - Model-scale evaluations
 - Experiments
 - No boundary layer tripping

- Tripping JIP
 - Δ KT, Δ KQ = f(J, Z, BAR, PD, **Re**, **k**_s)
 - Model-scale evaluations
 - Experiments and CFD
 - With boundary layer tripping
 - Full scale evaluations
 - CFD

- Fitting use cases:
 - 1. Model tests at different (model-scale) Reynolds numbers
 - Relative rotative efficiency (in-behind Re)
 - Open water efficiency (highest Re)

- Fitting use cases:
 - 1. Model tests at different (model-scale) Reynolds numbers
 - 2. Correlation between experiments and CFD
 - Experiments and simulations at same Re

- Fitting use cases:
 - 1. Model tests at different (model-scale) Reynolds numbers
 - 2. Correlation between experiments and CFD
 - 3. Scale effects
 - CFD simulation at different Re

- Fitting use cases:
 - 1. Model tests at different (model-scale) Reynolds numbers
 - 2. Correlation between experiments and CFD
 - 3. Scale effects
 - 4. Roughness effects
 - Full scale CFD with different k_s

- Fitting use cases:
 - 1. Model tests at different (model-scale) Reynolds numbers
 - 2. Correlation between experiments and CFD
 - 3. Scale effects
 - 4. Roughness effects
 - 5. Full-scale polynomials
 - Including Re and k_s effects

• Open questions:

- How to construct full scale propeller performance models?
- How to go from individual propeller fits to generic corrections?
- Which models and fitting approaches to use?
- How to evaluate models (validation)?
- Collaborative research MARIN and JIP partners
 - Share knowledge
 - Open discussion on results
 - Incorporate feedback

TRIPPING JIP

Problem

Boundary layer flow transition and flow separation occurs at model scale conditions

This complicates the extrapolation process to full-scale propeller performance prediction

Solution

Boundary layer control

Towards flow similarity, i.e. a turbulent boundary layer at model scale

Applying turbulators to efficiently trip the laminar boundary to a turbulent one

Impact

Effect on performance without boundary layer control is highly dependent on propeller design and operation condition

Computational Fluid Dynamics (CFD) should assist towards improved extrapolation procedures

Improve propeller performance prediction

Schuiling, Kerkvliet & Rijpkema, An Experimental Study on Flow Visualisation and Passive Control of Model Propeller Boundary Layers, SMP'24, Berlin, Germany, 2024

Kerkvliet, Baltazar, Schuiling & Eça, A Numerical Study on Model Propeller Performance Prediction Including Transitional and Passively Controlled Boundary Layer Considerations, SMP'24, Berlin, Germany, 2024

www.marin.nl