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Introduction MARIN

Laminar-Turbulent transition plays an important role in model

tests and strongly depends on Reynolds number and propeller
design

The experimental paint-test procedure to visualise the propeller
boundary layer flow offers the opportunity for numerical
validation

Can we enhance the procedures for extrapolating model-scale
results using Computational Fluid Dynamics (CFD)?

Schuiling, Kerkvliet & Rijpkema, An Experimental Study on Flow Visualisation and Passive Control of Model Propeller Boundary Layers, SMP‘24, Berlin, Germany, 2024
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Research objectives MARIN

Improve confidence in CFD prediction at
model-scale

Improve propeller performance

prediction for full-scale conditions using

L)

Ultimately, we want to move towards a \ /
O

reliable extrapolation procedure by using
model-scale data and full-scale CFD




From experimental to numerical setup MARIN

Experimental open-
water setup

Focus on the flow
problem and ignore
secondary issues of
lesser importance
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Propeller test case

Modern designed MARIN stock propeller

Tested in open-water conditions

400 rpm (Re = 3.5-10°) & 800 rpm (Re = 7:10°)

Diameter D 300 mm
Number of blades Z 5
Chord at 0.7R Cy7r/D 0.279
Pitch at 0.7R Py -r/D 1.045
Expanded Area Ratio AJA, 0.636




From experimental to numerical setup MARIN

Discretize the geometry
surface by small elements




From experimental to numerical setup MARIN|

* Discretize the geometry
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* Generate dense and high-
quality (hexahedral) volume
cells around the propeller




From experimental to numerical setup MARIN|

* Discretize the geometry
surface by small elements

* Generate dense and high-
quality (hexahedral) volume
cells around the propeller

* Expand towards the far field
domain to avoid unintended
influences of boundary
conditions




Numerical setup

CFD solver ReFRESCO
Developed at MARIN in collaboration with several universities and partners

It solves (un)steady (in)compressible viscous flows based on the RANS equations,
complemented with turbulence models, cavitation models and volume-fraction

transport equations for different phases
Many more details of current code: www.marin.nl

Turbulence and transition model
k-w Shear Stress Transport (SST) model
v-Reg Local Correlation Transport Model (LCTM)

Control of turbulence decay from the domain inlet (only for LCTM)
Solve turbulence transport equations without the effect of the dissipation term, up to
one propeller radius in front of the propeller centerline

ReFRESCO s
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Verification and validation

MARIN

The choice of model depends on the specific problem, available

resources, and desired

dCCuracy

To achieve a balance between accuracy and computational
efficiency model verification is of major importance
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Verification and validation MARIN|

The choice of model depends on the specific problem, available
resources, and desired accuracy

To achieve a balance between accuracy and computational
efficiency model verification is of major importance

Eca & Hoekstra. A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid refinement studies. Journal of
Computational Physics, 262:104-130, 2014.

Eca, Toxopeus & Kerkvliet, Procedures for the estimation of numerical uncertainties in the simulation of steady and unsteady flows. Technical
Report M-8, IST, April 2023.

Kerkvliet, Baltazar, Schuiling & Eca, A Numerical Study on Model Propeller Performance Prediction Including Transitional and Passively
Controlled Boundary Layer Considerations, SMP‘24, Berlin, Germany, 2024.
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Model-scale problem

Boundary layer
flow transition
and flow
separation occurs
at model scale
conditions

laminar

This complicates
the extrapolation
process to full-
scale propeller
performance
prediction

S€paration
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Model-scale problem

Boundary layer
flow transition
and flow
separation occurs
at model scale
conditions

This complicates
the extrapolation
process to full-
scale propeller
performance
prediction

Experiment



CFD approach including transition modelling

CFD including transition
LCTM (Local Correlation Transport Model)
modelling to solve transition
and flow separation

LCTM models exhibit high
sensitivity due to their
reliance on local turbulence
guantities
boundary conditions
turbulence decay control

CFD Experiment 1s



Influence boundary conditions / turbulence decay control MARIN

Tu = 1.0% Tu = 1.35% Tu =2.0% EXP
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Influence boundary conditions / turbulence decay control MARIN
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Extrapolation challenges

Extrapolation of model-scale results towards full-scale
predictions are challenging if the flow behaviour at model-
scale is not known

Thus, a more effective approach would involve striving for
boundary layer control and achieving flow similarity. This
means a turbulent boundary layer at model-scale
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Model-scale solution MARIN

Boundary layer
control towards
flow similarity

Applying
turbulators to
efficiently trip
the laminar
boundary

. S
No BL control Turbulators
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Model-scale solution MARIN

High Reynolds number
Boundary layer ==
control towards
flow similarity

Applying
turbulators to
efficiently trip
the laminar
boundary

oD
CFD Experiment
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Model-scale solution MARIN

Low Reynolds number

Boundary layer
control towards
flow similarity

Applying
turbulators to
efficiently trip
the laminar
boundary

CFD Experiment
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Open water characteristics MARIN

Untripped vs tripped

Absolute difference 0.9 i
An, of about 5% at the 0.8 [0k, l

design condition

baseline
low Re

turbulators
low Re

Thrust coefficient K-
differs with values from
6% to 10%

Ky 10Ky, Mo

LCTM
Tu=2%
low Re

0 0.2 0.4 0.6 0.8 1
Advance Coefficient J
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Open water characteristics MARIN

Untripped vs tripped

Absolute difference 0.9

An, of about 5% at the i ——LCT™
design condition E low Re
Thrust coefficient K; L _
differs with values from baseline
6% to 10% low Re

Ky 10Ky, Mo

Tripped/turbulent CFD
simulations

An, < 1% over the
complete J range

Difference for K; and

turbulators
low Re

KQ <2-39 LCTM
. ff Tu=2%
Negatwe effect 0 0.2 0.4 0.6 0.8 1 low Re

(parasitic drag)

. - Advance Coefficient )
turbulators is negligible
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Research objectives

v Improve confidence in CFD prediction at

model-scale

Improve propeller performance

prediction for full-scale conditions using

L)

Ultimately, we want to move towards a \ /
O

reliable extrapolation procedure by using
model-scale data and full-scale CFD
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Full scale CFD

MARIN

Reynolds scaling
primarily affects the
thrust coefficient

Torque coefficient
experience minimal
change

Overall increase in
open-water
efficiency
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Full scale CFD

Reynolds scaling
primarily affects the

thrust coefficient
12%

LN
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Full scale extrapolation MARIN

Most extrapolation procedures only correct for a difference in
drag

But a turbulent boundary layer at the same Reynolds number
significantly impacts lift

1978 ITTC Performance Prediction Method
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Full scale extrapolation

MARIN

Wrong trends
observed by
applying the
ITTC’'78
extrapolation
method for model-
scale results
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Full scale extrapolation

MARIN

Wrong trends
observed by
applying the
ITTC’'78
extrapolation
method for model-
scale results

For both laminar-
turbulent and fully
turbulent results
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Full scale extrapolation

* Wrong trends
observed by

applying the

ITTC'78 "
extrapolation ';\z
method for model-;
scale results 5

* For both laminar-
turbulent and fully
turbulent results
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Conclusions and outlook MARIN|

It is possible to accurately predict the performance of an open-water propeller
at model-scale, including the effect of transition and flow separation, using
transition modelling

However, small discrepancies between experiments and simulations can only
be achieved if the onset of transition and possible flow separation is known a

priori

Therefore, a feasible alternative is demonstrated, since the CFD results
performed with a turbulence model provide a very good comparison with the
open-water experiments including turbulators at the leading edge (flow
similarity)

A turbulent boundary layer during model-scale experiments offers a review of
current extrapolation methods towards a CFD-based extrapolation procedure
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A Collaborative Research Project on Full-Scale Propeller Performance Prediction m

32



A Collaborative Research Project on Full-Scale Propeller Performance Prediction m
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