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Practical ship afterbody optimization by multifidelity techniques
Hoyte C. Raven* and Joy Klinkenberg

Maritime Research Institute Netherlands (MARIN), Wageningen, Netherlands

ABSTRACT
This paper discusses multifidelity methods for CFD-based optimization of ship afterbody
designs; aimed at a fast application to a variety of practical cases. Surrogate-based global
optimization is used, using a multi-objective genetic algorithm. The surrogates are derived
by combining few high-fidelity computations, by free-surface RANS codes, with many low-
fidelity computations. For rather slender vessels for which the wave resistance variations
over the design space are dominant, a free-surface potential flow code is found very
effective as a low-fidelity solver, permitting a large reduction of the number of RANS
computations and the associated cost. Examples are shown for model 5415 and a fast
displacement vessel. For cases with variation in both viscous and wave resistance, an
alternative method is used combining coarse and fine-grid RANS computations; the coarse-
grid ones being about 20 times cheaper. Application of this coarse/fine grid multifidelity
optimization to a containership and a motor yacht shows its effectivity.
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1. Introduction

The detailed design of a ship hull form has a large
influence on its resistance and engine power at a
given speed. In the past, the hull form design was
based on experience and insight; and often supported
by model testing some design variations. Mainly since
the 1990s, a computational assessment of the hull form
has become a standard component of the design pro-
cess; initially using free-surface potential flow codes,
subsequently also Reynolds-Averaged Navier-Stokes
(RANS) codes. Both are now being used routinely in
ship design. From analysis of the computed flow
field and wave pattern, desired modifications of the
design are derived, and in a few steps improvements
of the design are usually achieved.

Today, also CFD-based hull form optimization
methods are being used increasingly in ship design.
These can have important benefits for fine-tuning
beyond what can be achieved in a few designer-directed
steps, and for finding the optimal trade-off between sev-
eral objectives or design points. There are many recent
publications on such optimization methods. However,
methods proposed often do not fit in well with the
demands of practical projects in our practice; as exten-
sive preceding work is often needed for the parametriza-
tion of the hull form or for prescribing constraints, and
the computational stage may also be time-consuming.

In our practice we have to deal with a large variety
of ship types; for each project there is just little time

available, perhaps 2 weeks at most for the compu-
tational work; and extensive design knowhow is avail-
able which we want not to replace, but to incorporate
in and supplement by optimization procedures.
Therefore, the methods we have developed differ in
some regards from other published approaches. We
use completely general parametric deformations of
an initial hull form, we involve designer-selected hull
form parameters that directly address flow properties
of interest, and we pay much attention to the required
computational effort and wall-clock time for the entire
process.

The present paper considers the optimization of a
ship’s afterbody design, aiming at minimum resist-
ance. The design of the afterbody is important as it
is responsible for the viscous pressure resistance and
often a substantial part of the wave resistance. Both
resistance components are quite variable and strongly
dependent on hull form details. Furthermore, the
stern wave making and viscous flow interact, in a
way that is roughly, but not precisely, known.
Therefore, most likely there is often room for further
improvement of ship afterbody design, and a detailed
and accurate optimization procedure would be an
asset. To reduce the computational effort of such an
optimization we have investigated multifidelity
optimization methods.

The paper is set up as follows. Section 2 discusses the
hull form parametrization. After a brief description of
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the computational tools in Section 3, the optimization
method is described in Section 4. Then we discuss mul-
tifidelity (MF) methods (Section 5), and the two classes
of MF methods we use: one combining a free-surface
potential-flow code with a RANS code (Section 6),
and one using coarse and fine-grid RANS computations
(Section 7). Examples of application to practical cases
are shown. After a discussion in Section 8, conclusions
are summarized.

2. Hull form parametrization

A principal component of a hull form optimization
system is a parametrization of the hull form variations.
This plays a crucial role, determining the relevance of
the design space, the required number of parameters,
the need to specify constraints, the feasibility and
efficiency of surrogate-based techniques, and the com-
plexity of the response surfaces. In general terms, we
want to have complete flexibility to define specific
shape variations by as few parameters as possible;
while ideally each member of the family of hull
forms is an acceptable, faired shape satisfying some
basic constraints.

A variety of hull form parametrization methods has
been proposed. In several papers, a full parametric
representation of the entire hull form is used, and a
selection of the parameters is varied in the optimiz-
ation. In our practice, usually, an initial hull form is
proposed by a yard, and is to be improved by detailed
modifications. This would require to first reproduce
the initial form by a parametric one, and then choose
the parameters to be varied. However, these para-
metric models often appear to involve a large number
of parameters. For example, Han et al. (2012) needed
80 parameters just to describe the forebody. Feng et al.
(2021) describe a significant amount of work to rep-
resent some containerships by parametric models.
Next, sorting out which of these parameters to vary
seems a large amount of work; not practical for the
variety of cases we have to address.

The alternative is parametric deformations of an
initial hull. Various methods have been proposed
also here; for example, (modified) Lackenby shifts
(Kim and Yang 2010; Han et al. 2012), additive poly-
nomial patches (Chun 2010), Radial Basis Functions
(Kim and Yang 2010) or Free-Form Deformations
(Brizzolara et al. 2015). In general, these methods
have the disadvantage of being unfamiliar to a
designer, and they often lack flexibility.

Instead, a ‘parametric blending’ as proposed in
(Hoekstra and Raven 2003) is used at MARIN success-
fully since 20 years. We start from the NURBS rep-
resentation of the initial hull form in a Computer-
Aided Design (CAD) system. If the designer acknowl-
edges a certain variation mode as promising for the
case at hand, a modified hull form is created having

the maximum deformation to be considered for that
mode. This is simply defined in the CAD system in
the familiar way, starting from the original and mov-
ing NURBS control points. This defines a 1-parameter
family of hull forms, given by the control points
moved by a fraction 0≤ par1≤ 1 from the original to
the modified position. The same is done for other
deformation modes of interest, leading to n basis
hull forms in addition to the original, and thereby
an n-dimensional family of hull forms given by the
parameters par1… parn. Immediate visual inspection
of all these hull forms can be done in the CAD system.

This method was originally developed as part of the
CAD system GMS, and has later been reimplemented
in RHINO (as proprietary plugins). It has been used
both for optimization and for systematic hull form
variations, in the RapidExplorer and ParnassosEx-
plorer systems (Raven 2022). It has several advantages:

. There is complete flexibility in the deformations
selected.

. Specific desired hull form changes can be achieved
with just 1 parameter, rather than several.

. All hulls are smooth and faired, and implicitly con-
straints can already be incorporated in the
definition of the deformed basis hull forms; such
as maintaining a flat of side, flat of bottom, or
hard points. Also, the basis hull forms can be
defined so as to have approximately the right dis-
placement and Longitudinal Centre of Buoyancy
(LCB), such that at most a small final adjustment
is needed after the optimization.

. The method is entirely familiar to CAD engineers,
who create a deformed basis hull in less than an
hour.

The variations applied to the cases discussed in this
paper, while sometimes apparently similar, still
depend too much on the particular case to be usefully
automated. The limited amount of manual CAD work
inherent to our approach is therefore acceptable.

With this ability to define whatever parametric
deformations, how to select them? Here we aim at
choosing deformation modes that directly affect the
physical effects of interest for the case at hand. If in
an initial computation for the original design, we
observe an undesirable flow feature, we try to address
that with physically relevant hull form changes, and
choose these as the basic variation modes; perhaps
supplemented by a few more general variations. This
limits the dimensionality of the design space and
leads to clear trends and relatively simple response
surfaces, suitable for the optimization methods we
will apply. Thus, existing design and hydrodynamic
know-how can be fully exploited in the definition of
the optimization space; and we base ourselves on
that as far as we can. Instead, if fixed, geometrically-
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oriented parameters are used, as in many of the men-
tioned alternative parametrizations, these would often
produce the desired physical effect only in combi-
nation; asking for variation of many parameters,
many computations and yielding unclear trends.

3. Computational tools and objectives

Three computational tools are used in this paper, and
they are briefly described here for completeness.

3.1 RAPID

RAPID (Raven 1992, 1996) is a free-surface potential-
flow code for computing the wave pattern and wave
resistance of a ship. It uses a Rankine source panel dis-
tribution on the hull and on a (wavy) plane at a small
distance above the wave surface. The full nonlinear
inviscid free-surface boundary conditions are
imposed. The problem is solved by iteration, in
which the wave surface is updated and the dynamic
trim and sinkage of the hull are adjusted until conver-
gence. A computation normally takes 1–10 min on a
desktop PC, depending on the Froude number. The
code is used on a large scale at MARIN and elsewhere,
without interruption since 1994.

As a potential flow is supposed, viscous effects are
neglected. Therefore, while the computed wave pat-
tern and flow are accurate along the greater part of
the hull, near the stern deviations occur, in particular
for fuller hull forms and wetted transom stern flows.
Consistently with the potential-flow assumption, a
dry-transom flow is always supposed.

In some other papers, free-surface potential flow
codes were found to perform poorly in optimization
(Grigoropoulos et al. 2017; Liu et al. 2022). However,
these were methods imposing linearized free-surface
boundary conditions. The linearization leads to a sub-
stantial loss of accuracy in wave pattern, transom stern
flow and resistance, so their judgement does not apply
to the present code.

3.2 PARNASSOS

PARNASSOS (Hoekstra 1999; Van der Ploeg et al. 2000)
is a RANS code for computing the viscous flow around
ship hulls. The steady RANS equations are discretized
on a structured multiblock mesh, and solved in fully
coupled form by a multiple-sweep marching iteration.
This gives the code some particular properties, e.g.
computing a full-scale flow without wall functions is
straightforward. Today it is used routinely for calculat-
ing the viscous resistance and form factor for all hull
forms tested at MARIN.

For free-surface flows, a free-surface fitting approach
is used. The steady problem is solved by iteration
instead of time stepping. This requires that the free-

surface boundary conditions are cast in a particular
form (Raven and Van Brummelen 1999; Van Brumme-
len et al. 2001). The resulting method is accurate and
extremely efficient in computation time. However,
due to occasional robustness problems of the iterative
process in practical applications, for free-surface flows
the use of PARNASSOS is less common today, and
REFRESCO is used instead, even though the required
computation time is at least an order of magnitude
larger.

3.3 REFRESCO

REFRESCO (Crepier 2017; Pereira et al. 2017) is a more
general finite-volume RANS code, computing steady
or unsteady viscous flows. The momentum and
pressure correction equations are discretized on an
unstructured mesh, and solved in segregated form by
a SIMPLE-type solution algorithm. Typically, grids
are generated using the HEXPRESS tool. Free-surface
capturing by a Volume-of-Fluid method is used, ask-
ing for a time-stepping solution process. Compu-
tations are done on a high-performance computing
cluster with large-scale parallellization. The code is
used extensively for a variety of practical applications.

4. Optimization method

In the first publications on ship hull form optimiz-
ation, the optimization algorithm was usually coupled
directly with the CFD code: the search algorithm pre-
scribed the next parameter values to be evaluated, and
the CFD code computed the corresponding objective.
This made the effectivity of the optimizer crucial for
the effort. Many different optimization algorithms
have been proposed. One distinction is between local
and global optimizers. Both have been applied in
ship hull form design, sometimes in combination.

Because of the possible existence of local minima
and the smaller sensitivity to any numerical noise in
the computed objectives, we favour the use of a global
optimization method. In addition, such methods are
effective in finding Pareto-optimal solutions for mul-
tiple objectives. However, global methods are invariably
less efficient than local optimizers. For example, Brizzo-
lara et al. (2015) use a genetic algorithm in a 20-par-
ameter optimization and need to evaluate some 7000
hull forms for convergence; while Kim and Yang
(2010) compute about 2000 hull forms for a 9-par-
ameter optimization. Chun (2010) compares an SQP
method with some different Particle Swarm methods,
finding that the best of the latter is acceptably efficient.
Still, a direct coupling of a CFD code with a global opti-
mizer often results in needlessly overresolving the vari-
ation of the objectives in the design space.

Today, therefore, surrogate-based methods are
more popular. In these, the objective function is
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interpolated or approximated algebraically by a
‘response surface’. In the optimization process, each
objective evaluation is then just an algebraic operation
rather than running a CFD code, giving a vast
reduction of the computational effort. Peri and Cam-
pana (2008) partially used surrogate models in their
early multifidelity methods. Kim et al. (2011) apply
them successfully in hull form design. Scholcz et al.
(2015) study the accuracy of some different response
surface prescriptions and also conclude that surro-
gate-based optimization gives a large increase in
efficiency.

The surrogate-based global optimization (SBGO)
we have set up (Raven and Scholcz 2017), originally
for the potential-flow code, is briefly described here.
We have based the system on the DAKOTA package,
a large set of optimization tools developed by Sandia
National Laboratories (Adams et al. 2015); of which
we apply several components.

Step 1: a Design of Experiments (DoE) is created; a
set of points spread over the design space in a particu-
lar fashion. In most cases, we have used a Latin Hyper-
cube Sampling (LHS), often supplemented with some
corner points of the design space. Each point rep-
resents a hull form given by its parameter values.

Step 2: For all of these hull forms the flow code is
run, yielding the value of the objective(s). For multi-
objective problems involving multiple speeds or
drafts, a computation is needed for each of these.

Step 3: For each objective a response surface is gen-
erated, interpolating or approximating the depen-
dence of the objective on the parameter values. In
most cases, we use a Kriging approximation, generated
using Dakota.

Step 4: Optimization is done by running a Multi-
Objective Genetic Algorithm (MOGA), using the
response surfaces to provide the value of the objective
functions at each point requested by the optimizer.
This surrogate-based optimization takes negligible
computation time, so the choice of the optimizer is
immaterial, as long as it finds the global optimum
reliably. The basic MOGA serves this purpose well.
The result of this phase is a list of Pareto-optimal
hull forms.

Step 5: The Pareto front is entirely based on the
response surfaces, the accuracy of which may not be
sufficient everywhere. Therefore, next the CFD code
is run for some of the supposedly optimal hull forms
spread along the front. If the computed objective
values differ significantly from those from the
response surfaces, these new points are added to the
table of DoE results, and the response surfaces are
regenerated, thus making them more accurate in the
region close to the optimum.

Step 6: with the updated response surfaces we
return to step 4 and run the optimization. If a signifi-
cant change is found, this loop may be repeated until

convergence of the front. We note that in earlier
papers this iteration on the response surfaces has fre-
quently been omitted (Kim et al 2011; Scholcz et al.
2015) but we have incidentally found significant shifts
of the front in the next iteration. On the other hand,
continued iteration should be limited to prevent a
clustering of points resulting in overfitting of the Kri-
ging approximation.

The required size of the DoE depends on the case.
An approach to find it is by ‘Incremental LHS’; deter-
mining the accuracy of the response surfaces by cross
validation, and doubling the DoE size until it is
sufficient. Clearly, ‘adaptive sampling’ techniques
(Bonfiglio et al. 2017; Pellegrini et al. 2018) are
much more systematic, but strongly consecutive,
which is not practical for short-term projects if a
large computational facility is available.

The only time-consuming part is the flow compu-
tations (steps 2 and 5). In case of wave resistance mini-
mization using the potential-flow code, all
computations for the DoE can normally be done over-
night on a single desktop PC. All the other steps
together are typically done in a few hours; even though
we avoid a complete automation, such that we can
eliminate any computational outliers and supervise
the generation of response surfaces.

The procedure described is frequently applied in
practice since 2016 and has been found most effective.
Some examples have been published before. In (Raven
and Scholcz 2017), it was used for minimizing the
wave resistance of a product carrier at two speeds.
Five design parameters were introduced, each of
them addressing an aspect of the wave pattern com-
puted for the initial hull form. The optimization
required to evaluate 127 hull forms. Wave resistance
reductions of 14% and 19% were achieved. Bigini
et al. (2022) apply the same framework, parametriza-
tion and potential flow code successfully for optimiz-
ation of a motor yacht hull form. By additional RANS
computations, the quantitative validity of the poten-
tial-flow predictions was confirmed.

5. Multifidelity optimization

The potential flow code provides a good prediction of
much of the wave making but usually has deviations
for stern waves. Therefore, for optimizing the stern
design more precise flow models need to be used;
specifically, free-surface RANS codes. However, an
optimization based on those asks a computational
effort incomparable to that mentioned in the previous
section, even with surrogate-based global optimiz-
ation. For containership design projects, today often
a multi-objective optimization for e.g. 4 different
draft/speed combinations is requested. With 5 design
parameters, at least some 120 hull form variations
would need to be computed, thus asking for 480

4 H. C. RAVEN AND J. KLINKENBERG



RANS computations – a time-consuming and expens-
ive matter. Therefore, further computational accelera-
tion is desired.

Such acceleration is sought in multifidelity tech-
niques. When applied in an SBGO procedure, this
means that the response surfaces will be constructed
based on a limited number of high-fidelity (HF) com-
putations, supplemented by a large number of cheaper
low-fidelity (LF) computations. If properly set up,
equal accuracy of the response surfaces should be
reached with reduced computational cost. For the
low-fidelity computations, either a simpler model of
the flow can be considered, or the same RANS
model but with a coarser grid.

As a first illustration, Figure 1 shows the response
surfaces for a 3-parameter variation of the afterbody
of a fast displacement ship. The resistance is plotted
as a function of par2 and par3, the three planes are
for constant values par1 = 0, 0.5, 1. The upper three
planes have been obtained from 31 HF computations
(using a free-surface RANS code). These data points,
indicated by markers, are for variable par1, so they
are contained between the surfaces. The three planes
below are the corresponding results from an LF sol-
ver, 150 potential flow calculations. Clearly, the
trends against the design parameters are quite simi-
lar, but not identical; and the LF resistance level is

a few percent lower. If we subtract the low-fidelity
results from the high-fidelity ones, we obtain a differ-
ence function shown at the bottom of the figure,
which is a very simple function of the design
parameters.

Thus, if the low-fidelity approximation has a simi-
lar dependence on the hull form parameters as the HF
method, we postulate

Rt HF(par) = Rt LF(par)+ DRt(par) (1)

with Rt the objective, e.g. the resistance. Most of the
trends are given by Rt_LF, found from a large number
of cheap low-fidelity computations; while the simple
function ΔRt can be well deduced from a small num-
ber of data points – therefore, needing a small number
of HF and LF evaluations.

Instead of the ‘additive’ formulation given above,
we find it often useful to introduce a scale factor ρ
multiplying the LF result:

Rt HF(par) = r.Rt LF(par)+ DRt(par) (2)

which we denote as a ‘scaled additive’ form. Here we
derive ρ from the slope of the correlation line of HF
and LF objectives.

The same expression applies to the ‘CoKriging’
method (Forrester et al. 2007), in which both Rt_LF

Figure 1. Response surfaces for fast displacement ship. Each plane is for constant par1. Upper 3 surfaces are for HF method,
middle 3 surfaces for LF, lower 3 surfaces show the difference ΔRt (increased by a constant to show it in the same graph).
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and ΔRt are approximated by Kriging, but the scale
factor ρ is determined together with the Kriging
approximation of ΔRt by Maximum Likelihood Esti-
mation. This is more advanced than the scaled addi-
tive approach and aims at choosing the scale factor ρ
such that the best Kriging approximation of ΔRt is
obtained. Besides these methods, in principle other
mappings from LF to HF can be considered, e.g. a
multiplicative formulation, but we have not yet
studied the possibilities of those.

Multifidelity (MF) methods for ship hull form
optimization have been studied in several recent
papers. Peri and Campana (2008) consider MF
methods, either combining potential and RANS
methods or using different panel densities. They use
a Particle Swarm method, driven by the LF solver
plus a correction to HF. This correction is modelled
by Kriging or other surrogate models, and repeatedly
updated when new HF data are added during the
optimization. Therefore, no surrogate is used for the
LF results, and many computations are needed. In
an example combining potential flow and RANS, the
trends of both solvers are opposite, and single-fidelity
might have been more efficient. In Peri et al. (2010)
however, the same MF combination is used success-
fully to optimize the forebody of the 5415 model,
showing the potential to reduce the number of HF
evaluations strongly. Peri et al. (2012) apply this MF
method to optimize a catamaran hull form. The MF
formulation reduces the required number of HF com-
putations by 40%.

Initially, no surrogate-based MF methods were
used, but most later developments do. Pellegrini
et al. (2017) apply an additive MF formulation, using
response surfaces formulated in terms of Radial
Basis Functions. LF and HF data are from a linearized
free-surface potential flow code with different panel
densities. Using adaptive sampling they solve a 4-par-
ameter SWATH optimization problem in 117 LF and
27 HF calculations, which seems really efficient. Bonfi-
glio et al. (2016, 2017) use CoKriging. In Bonfiglio
et al. (2016) a linearized free-surface potential flow
code and a RANS solver are combined. For optimiz-
ation of a SWATH design with 8 parameters, using
adaptive sampling in the final stage, they use 1100
LF and 107 HF computations, again most efficient.

Wackers et al. (2020) have studied an additive mul-
tifidelity formulation with LF and HF data obtained
from the same RANS solver but with different grid
density. For one of the solvers considered, these
were obtained by automatic grid adaptation. The
response surfaces were defined by Radial Basis Func-
tions, with fewer basis points than data points, in a
way to filter out the noise, found mostly in the
lower-fidelity data. They find that their procedure
works better with 3 fidelity levels than with two, a con-
clusion that likely depends on details of the noise

filtering used. In a 2-parameter optimization of
model 5415, they use 8 HF, 7 intermediate-fidelity
and 30 LF computations.

Liu et al. (2022) study hull form optimization
using a CoKriging method. Various analytical test
problems are studied to determine its properties
and dependence on the number of HF evaluations.
The method is then applied to optimization of the
5415 model at Fr = 0.28, combining the Neumann–
Michell method as LF, and a RANS code as HF sol-
ver. The LF code is more than 200 times faster than
the RANS code but yields a rather poor prediction of
the wave pattern for the basis hull form, which
makes it somewhat uncertain for predicting design
trends. The final optimization is done with only 50
LF and 30 HF computations, for a 5-parameter
design problem.

In our own developments (Raven 2018; Raven and
Scholcz 2019), initially we have also used CoKriging to
generate the multifidelity response surfaces. An
implementation in the routine MultiFiCoKriging,
part of the OpenMDAO package, was used. An
improvement compared with an additive MF formu-
lation was not observed, and the routine showed an
unpredictable dependence on the input. Later it was
found that the Maximum Likelihood Estimation in
the Kriging process was done using a local optimizer,
leading to inferior results in some cases. This has
probably affected our judgement of the method.

CoKriging is often promoted by quoting an
example from Forrester et al. (2007), which shows a
magic improvement of the approximation of an alge-
braic function by the use of a somewhat similar LF
function. However, this is a constructed case with a
very particular choice of the LF function; for many
other LF functions, even more similar to the HF func-
tion, the advantage of CoKriging compared with
single-fidelity Kriging is soon lost (Raven and Scholcz
2019). Therefore, while for certain less well-correlated
LF and HF functions CoKriging could lead to a more
accurate approximation of the difference function
than the scaled additive method we use now, the
advantage will likely not be that substantial. In general,
a good correlation of LF and HF results remains essen-
tial for the success of a multifidelity method, as
demonstrated by Toal (2015).

We shall now discuss the two classes of multifidelity
optimization for ship hull forms that we use in practi-
cal ship design projects: the combination of potential
flow and RANS codes, and of coarse and fine grid
RANS computations.

6. Multifidelity optimization using potential
flow and RANS codes

The first multifidelity optimization method we have
developed is a rational extension of the method of
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Section 4. The free-surface potential flow solver in
general cannot be relied on for optimizing the stern
design, but for rather slender ships it often predicts
the stern wave pattern fairly accurately. Therefore, it
is of interest to study whether it still can serve as a
low-fidelity solver in a multifidelity optimization.

Thus, the HF result is the total resistance from a
free-surface RANS code. The LF approximation is
the wave resistance predicted by the potential flow
code, plus a viscous resistance estimate found from
the actual wetted surface area and a fixed form factor
1 + k, which is estimated or computed for the initial
design. Therefore, this multifidelity procedure can be
expected to be limited to ships and hull form vari-
ations for which wave resistance variations are domi-
nant and the viscous resistance is largely constant.

6.1 Model 5415

The first example is model 5415, a naval vessel design
frequently used as a test case; for Fr = 0.28 at full scale.
In previous optimization studies for this model, often
many hull form parameters were varied (Grigoropou-
los et al. 2017), and sometimes the most advanced
techniques have been applied to select the hull form
variation modes (Serani et al. 2018). Instead, we
apply the approach outlined before.

Figure 2 compares the wave patterns of the original
design, predicted by the nonlinear potential flow code
RAPID and by the RANS solver, REFRESCO in this case.
For the forebody waves, there is very little difference,
except for the quicker decay of the waves in the
RANS code, caused by the larger numerical damping
and coarser grid away from the hull. The stern wave
system is somewhat weaker in the RANS results due
to viscous effects, with some forward shift caused by
the wave propagation over the viscous wake. Further
aft, most of the amplitude difference is again due to
the numerical damping of the RANS code. The agree-
ment promises a useful application of the potential
flow code.

We recall here that a linearized potential-flow
code cannot properly deal with the immersed
transom and may not be useful here. A similar
wave pattern comparison in Serani et al. (2022)
clearly shows the typical deviations caused by the
linearization; which in their case also leads to a
poor LF-HF correlation.

To select the hull form variations to be studied, we
notice from Figure 2 that the largest contribution to
the wave resistance comes from the stern wave system.
These waves have at least the same amplitude as the
bow wave system but are less divergent, therefore
their resistance contribution is larger. So we address
the stern wave making in the first place. Based on
this wave pattern and experience with similar cases,
we introduce only 3 parameters:

. one lifting the transom edge, to reduce the rooster
tail and stern wave amplitude;

. one increasing the S-shape of the stern buttocks,
with a concave part just ahead of the transom. If
properly shaped this often reduces the transverse
stern wave components;

. one increasing the stern deadrise, which may make
the stern waves more divergent but might counter-
act the effect of the S-shape.

In this design space, we perform RANS computations
for 27 hull forms (3 * 3 * 3). Each takes 4.7 h on 240
cores, for a grid of 5.2 M cells. For the potential-flow
code, we create a DoE consisting of the same 27, plus
a Latin Hypercube Sampling of 100 hull forms. Each cal-
culation takes 2.5 min on a single desktop PC for the
converged nonlinear solution, using 12,500 panels; so
all are ready in 5.5 h. Therefore, an HF evaluation
takes 25,000 times more calculation time than an LF one.

Figure 3 shows the correlation of LF and HF resist-
ance values, which is quite satisfactory; taking into

Figure 2. Wave pattern of model 5415, Fr = 0.28, full scale.
Top half: RANS (REFRESCO); bottom half: potential flow (RAPID).

Figure 3. Correlation of resistance values from potential and
RANS code, for 5415 case.
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account we are considering stern variations. Next, we
generate response surfaces for HF and LF separately.
Figure 4(a) shows these, plotted against the S-shape
and transom height parameters, for three values of
the deadrise parameter. The trends are remarkably
similar. In an additive MF formulation, the difference
function ΔRt = Rt_HF - Rt_LF appears to be a simple
and fairly smooth function of the parameters, as
shown in the same figure. Thereby, if the number of
HF points is reduced to 15, the difference function
found is nearly identical. Figure 4(b) shows themultifi-
delity response surfaces obtained from just 15 HF
points plus 127 LF points. The pink markers are the
HF data used, the yellow ones are the 12 unused points.
For these, theMF surface has an RMS error of 0.33% of
Rt, or 4% of the range of Rt. Thus, with just 15HF com-
putations we have obtained a fairly accurate response
surface; most efficient for a 3D design space.

The optimum clearly is outside the permitted par-
ameter ranges, and larger gains could be made. For
the best form inside this design space, the resistance
reduction is 6.8%, for this full-scale case.

To compare this with model-scale optimizations
done in other papers, we have to correct for the larger
viscous resistance contribution in that case. For an
estimated form factor 1 + k and assuming all reduction
achieved is in wave resistance, this would mean some
4.4% reduction of the total resistance for model scale.
We note that Liu et al. (2022), using a CoKriging tech-
nique with 30 HF points and optimizing in a 5-par-
ameter space, achieve a resistance reduction of 5.1%

at the same Froude number; while Wackers et al.
(2020), using 2 parameters found by extensive preced-
ing work, achieve 4.5% reduction at Fr = 0.30, using 7
HF and 8 intermediate-grid results. So our straightfor-
ward approach, combining design considerations with
multifidelity optimization in the way shown, has pro-
duced a comparable resistance reduction, achieved in
a limited amount of time.

The resulting hull form is compared with the orig-
inal in Figure 5. The S-shape parameter is found quite
effective and is at maximum value. Lifting the transom
helps somewhat while increasing deadrise increases
resistance. Overall the new hull form is quite accepta-
ble and fair. Figure 6 shows that a substantial
reduction of the stern wave system has been achieved.

6.2 Fast displacement ship

This test case, already described in (Raven 2018), con-
cerns a slender fast displacement hull with a bulbous
bow and a flat, wide, immersed transom stern. Block
coefficient is 0.57, L/B = 5. The stern is to be optimized
for Fr = 0.27 and 0.37. A comparison of the wave pat-
terns of the potential flow and RANS code again
showed a large similarity. Three parameters were
defined: one increasing the deadrise at the stern, the
other two giving a moderate S-shape to the stern but-
tocks. For potential flow, a dense DoE of 150 hull
forms was calculated. 31 free-surface RANS compu-
tations were done using PARNASSOS, on a grid of 4.9
M cells per symmetric half. Each took about 24 h on

Figure 4. Model 5415, full scale, Fr=0.28. (a) Response surfaces for HF (upper 3 surfaces) and LF (middle 3), against S-shape and
transom height parameters, for 3 values of the deadrise parameter. Bottom 3 planes are the same for ΔRt (plus a constant). (b) Multifi-
delity response surface deduced from just 15 HF points (spherical markers). Triangles are the twelve unused HF points, for validation.
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3 cores of an HPC cluster – 2000 times more than the
LF code. Response surfaces, generated separately for
LF and HF results, for Fr = 0.27 have been shown in
Figure 1 and show near-identical trends, while for
Fr = 0.37 the LF results had somewhat weaker trends
than HF.

The difference function ΔRt is again a simple func-
tion of the parameters for both speeds, and could be
derived nearly as well from just 7 points in this 3D
space; therefore just requiring 7 HF computations
for each speed. A multi-objective optimization was
done next, using these MF response surfaces derived
from 7 HF and 150 LF results; and the resulting Pareto

front checked by additional HF computations. As
shown in Figure 7 this confirmed the accuracy of the
front and the MF response surfaces. The LF optimiz-
ation alone produced a similar front but with smaller
gains; also it indicated similar parameter values and a
very similar reduction of the stern wave system here.

For a selected point on the front the total resistance
is reduced by 3.6% for the lower speed, 2.6% for the
higher; corresponding with 18% and 6% of the wave
resistance, respectively. As the original hull was the
result of quite some design work already, this further
refinement is significant.

6.3 Containership

For the third example, a containership stern, there is
less chance of success. For the lower Froude number

Figure 5. Original (top) and improved afterbody of model 5415. In bodyplan, light lines (blue) are original, dark lines (red)
improved design.

Figure 6. Stern wave of original (top) and improved design
(bottom), as computed by RANS code.

Figure 7. Pareto plot for fast displacement ship case. Resist-
ance as percentage of that of original design. Right front
(red markers) is Pareto front from potential-flow code, left
front (blue markers) that from MF optimization using 7 HF
points. Black markers are all RANS computations done.
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of 0.20, the stern waves are shorter compared with the
thick boundary layer and wake at the stern, so more
viscous effects on the wave making can be expected.
In the comparison of wave patterns in Figure 8,
large differences in predicted stern wave are observed.
The pronounced transverse waves of the potential-
flow solution are largely absent in the RANS solution,
which instead has more diverging components.
Whether this will result in a sufficient correspondence
of design trends to make multifidelity optimization
effective, is to be seen.

The four hull shape variation modes selected are
apparently comparable to the previous cases, but
look quite different for the present hull form: we
choose a long and short S-shape of the stern buttocks,
lifting of the transom edge, and variation of the V-
shape of the stern. A DoE of 240 hull forms was com-
puted using the potential-flow code. Optimization just
based on those promises 6.2% resistance reduction by
going for a flat stern (minimum V-shape) and maxi-
mum S-shape.

Next, a DoE of 40 hull forms has been computed
using the RANS code (PARNASSOS). An initial com-
parison of the LF and HF response surfaces indicated
a complete lack of agreement, and a correlation of LF
and HF resistance values in Figure 9 seems absent. No

significant improvements are found by the HF code,
even for cases that are much better in the LF results.
Therefore, this case turns out completely different
than the previous ones.

An explanation was found in the transom flow
regime. For these stern variations, the type of transom
flow is not evident a priori, and the RANS code pre-
dicts a dry-transom flow in some of the cases, wetted
transom in others. In the potential-flow solver, how-
ever, a dry transom is modelled in all cases, since with-
out viscous effects there is no valid model of a wetted-
transom flow. Thus, for cases having a dry-transom
flow in the RANS solution, the transom flow regimes
in HF and LF solution correspond and we do observe
some correlation (Figure 9); but the trend is about half
as strong in the HF solution, likely connected with the
weaker stern wave system. For wetted-transom flows
the correlation is absent and the LF solution does
not indicate the hull shapes that result in some resist-
ance reduction.

Subsequently, additional HF computations have
been made, to a total of 77, and HF response surfaces
have been generated separately for the cases with wet
and dry transoms. From Figure 10 we observe that
these have completely different trends, indicating
that different design guidelines need to be applied
for the two transom flow regimes; and asking for a
redefinition of the design space here. The lower
plane in the figure is the response surface from the
LF method, which has a slope corresponding with,
but larger than, that of the HF dry-transom surface.

Dry transoms primarily occur here for more
strongly S-shaped buttocks and smaller V-shape par-
ameters, i.e. flat sterns. Instead, more V-shape and
less S-shape tends to promote a wetted transom, as
the more contracted shape leads to a higher pressure

Figure 8. Perspective view of computed stern wave patterns
for containership, original design. Left side: as computed by
potential-flow code; right side: computed by RANS code.

Figure 9. Containership case, correlation of HF and LF total
resistance. Black dots: dry-transom flow in RANS solution; cir-
cles: wetted-transom flow.

Figure 10. Response surfaces against V-shape and short S-
shape parameters, for fixed other parameters. Upper plane
(red mesh and markers): dry transom. Middle plane (blue
mesh and markers): wetted transom. Lower plane is from LF
method. Markers are for variable par2 and par3.
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level aft of the stern. In the present case, the lowest
resistance levels are actually found for wetted trans-
oms. Also, the original hull form had a wetted transom
flow. This explains the smaller gains made in the HF
results, and also the much weaker transverse wave sys-
tem in Figure 8.

Therefore, we have clearly met a limit of the applica-
bility of potential flow as an LF method for multifidelity
optimization of a ship’s afterbody design. As anticipated,
this method can serve in case the viscous resistance is
essentially constant in the design space. But the exchange
of wave resistance and viscous losses that occurs in the
wet-dry transom transition cannot be captured.

In summary, for optimizing the afterbody of rather
slender vessels at a not too low Froude number and
with dry-transom flow, multifidelity optimization
combining the free-surface potential flow solver and
a RANS code has been found to be effective and
most efficient. For other cases, we will need another
LF method, as described in the next section.

7. Multifidelity optimization using coarse
and fine-grid RANS computations

If significant viscous-resistance variations occur in the
design space, these need to be included also in the LF
model. The second multifidelity method we have set
up, therefore, only uses a RANS solver but with differ-
ent grid densities. A large number of LF computations
on coarse grids, and a limited number of HF compu-
tations on fine grids, are combined to derive multifide-
lity response surfaces, to be used in surrogate-based
global optimization. Again this will require that the
trends with design variations are sufficiently corre-
sponding. In this case, this correspondence is not lim-
ited by differences in the flow model, but by numerical
errors and their variation over the design space.

7.1 Grid generation

We intend to use the REFRESCO code here. For the gen-
eration of the unstructured grids, NUMECA Hexpress
is used. In this tool, first a background grid with large
cell sizes is set up, which is then locally refined with
some refinement levels: the number of refinements
(halving the cell size) compared to this base back-
ground grid. The refinement is done on the surfaces
of the hull, including additional refinement at the
transom edge. Furthermore, refinement boxes are
defined, where the grid is also refined. For example,
some of these boxes are there to capture the Kelvin
wedge, to correctly represent the wave pattern. There-
after, the grid is snapped to the surfaces and a buffer
layer is constructed, before the viscous layer is
defined. This typically results in an unstructured grid
of around 7 million cells for a bare hull, in a compu-
tational domain of length 6 Lpp, half width 2 Lpp

and height 4 Lpp. For full scale, wall functions are
used, with a y+ of around 200.

Coarsening of a grid can be done in several ways of
which two have been explored, denoted Coarse I and
Coarse II. In Coarse I, the initial grid cell size was
doubled in each direction. Almost all other refine-
ments were set one level less. This means that in gen-
eral 4x less cells in each direction were specified. In
Coarse II, the initial cell size was also doubled in
each direction, but the refinement levels were kept
the same. This means only 2x less cells in each direc-
tion. To still obtain a sufficiently small grid size, only
refinement boxes close to the ship are kept in place.
The Kelvin wedge has been completely excluded
from grid refinements. In this way, the pressure and
shear stresses on the hull should be better captured
compared to Coarse I.

The first test case was a set of three hull forms, con-
sisting of the original, a variant and an intermediate
shape. Figure 11 shows the resulting normal and
coarse grids, including the number of cells. The vari-
ation of the calculated resistance is shown in
Table 1. Both the time step and the number of outer
loops were kept equal in these computations. The
wall clock time is given in Table 2.

Clearly, the low fidelity results, calculated on a grid
with about 1/10 of the number of cells, have a larger
resistance. Coarse I shows an increase of about 15%
and Coarse II of about 7.5%. This increase makes it
quantitatively unacceptable for most purposes. How-
ever, the relative variation of resistance between the
design variants is almost equal at least for Coarse II.
As in general its results were much better, only Coarse
II is used in the remainder of this paper.

We thus notice that the coarse-grid generation is
rather critical. Moreover, if other objectives need to
be deduced from the same LF computations, e.g. the
wake field, additional requirements for the coarse-
grid generation hold.

7.2 Acceleration of LF computations

To reduce the overall effort and justify the added
complexity, we have studied several other possibilities
to further reduce the computation time of the LF
computations. For the coarse grids, initially, the
reduction of the calculation time was roughly pro-
portional to the reduction of the number of cells,
see Table 2. Normally in CFD the calculation time
scales with the number of cells to a higher order, so
the coarse-grid computations seemed unduly expens-
ive. Acceleration was obtained by increasing the time
step size proportionally with the mean cell size, and
by reducing the number of outer loops per time
step as enabled by the faster convergence. With the
settings found, the coarse grid computations have
about 10 times fewer cells and take about 20–25
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times less CPU. Additional acceleration options may
exist in the trim and sinkage adjustment; for example,
by fixing sinkage at the value of the initial hull and
just solving for the (more variable) trim angle.

7.3 Comparison of response surfaces

To assess the viability of coarse-fine multifidelity
optimization, we have first compared LF and HF
response surfaces for some cases. Figure 12 shows
these for a containership stern, with variation of the
vertical position of the transom edge and the V-shape
of the aft sections. The response surfaces are defined
by Kriging. The upper response surface in the figure
is for coarse grids of 700,000 cells, defined as in Section
7.1; the middle surface is for grids of 4.6 million cells,

the lower for 10.8 million cells. The coarser the grid,
the higher the resistance again, even by 15%. But the
trend against the design variables is quite comparable.
The intermediate surface, which has a larger number
of points, shows more variability. Whether these are
genuine trends or just due to scatter in the data is
unclear. How we can systematically distinguish these
in general is an important question we have not
addressed yet. In any case, the figure promises a useful
application of the coarse-grid data. Several other cases
have been examined, with similar conclusions.

7.4 Multi-objective multifidelity optimization of
a containership

The first actual test case is a large containership (not
the same as that from Section 6.3). The initial hull

Figure 11. Surface grids (left) and cross cut at waterline (right) for the three methods of meshing.

Table 1. Bare hull resistance of half the ship in kN. In brackets,
the relative difference compared to the normal mesh is given.
[kN] Normal Coarse I Coarse II

Original 1337 1554 (+16.2%) 1436 (+7.40%)
Intermediate 1284 1377 (+7.24%)
Variant 1255 1436 (+14.42%) 1351 (+7.65%)

Table 2. Wall clock time of the simulations of the original
geometry in seconds.
Normal Coarse I Coarse II

22,851 (6u20m51s) 3120 (0u52m00s) 2479 (0u41m19s)
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form is a design from a late stage in a practical project,
already refined through CFD work. We want to opti-
mize the afterbody design for two conditions:

A. Draught 16 m, speed 19 kn,
B. Draught 14.5 m, speed 22 kn.

As hull form parameters we choose:

1. the height of the lowest point of the transom edge;
varied from 13.8 to 16.9 m above the baseline;

2. The shape of the stern buttocks, varied from some-
what concave to somewhat convex aft, without
changing the height of the transom edge;

3. the V-shape of the stern sections;

4. the roundness of the transom edge and the last
stern sections.

In the 4D design space we generate a DoE of 12 points
for HF, defined by Latin Hypercube Sampling; and 96
for LF, generated by ‘Incremental LHS’, such that the
12 HF cases are also part of the LF DoE. We use the
RANS code REFRESCO, for the ship at full scale. For
the LF computations, a coarse grid of 800,000 cells
was used, and trim and sinkage were fixed at the values
computed for the original design. The required CPU
time per case was 40 min on 120 processors. The HF
computations used grids of 7.8 million cells, and
trim and sinkage were left free. Each took 7 h on 240
processors, about 20 times more costly than LF.

Figure 13 shows the correlation of the computed LF
and HF resistance values. For Condition A this is really
good. The correlation line shown has slope of 0.87, so
the trends are stronger in the LF results, and the resist-
ance level again is a lot higher. This slope is used as the
factor ρ in Equation (2), so ΔRt is just the vertical devi-
ation of the points from the lines in Figure 13, plus a
constant. For condition B the correlation is much less
convincing and the slope of the line is 1.20.

Response surfaces, derived by Kriging, are shown in
Figure 14; where resistances have been normalized
with that of the initial design on the coarse grid.
Those for LF are well-defined by the 96 LF points.
For condition A, the ΔRt surfaces are almost a con-
stant, and are also well defined by the 12 data points.
Response surfaces derived from just the 12 HF points
in this 4D design space, without the support from the
LF data, would be much less reliable. The same holds
for condition B, but the poorer correlation of LF and
HF data is reflected in ΔRt response surfaces with
some more variation and shape. Using just 12 HF
data points may lead to some inaccuracy here. Still,
the multifidelity response surfaces should be more
accurate than the HF surfaces.

Figure 12. Response surfaces for resistance of a containership
as a function of transom height (var1) and V-shape of stern
(var2), as computed on 3 grid densities: 0.7 M (upper surface),
4.6M (middle surface) and 10.8 M cells (lower surface).

Figure 13. Correlation of resistance computed on coarse and fine grid, for condition A (left) and B (right).

SHIP TECHNOLOGY RESEARCH 13



The uncertainty of the response surfaces can be
estimated by cross-validation. Assuming indepen-
dence of the errors in LF and ΔRt response surfaces,
we estimate the uncertainty of the MF surface as
σMF =√[ρ2 σLF

2 + σdif
2 ]. Then for condition A the

uncertainty of the MF surface is 29% of that of the
HF-only surface, about 2.1% of the range of the MF
response. For condition B the uncertainty of MF is
58% of that of HF, and 3.6% of the range.

The multifidelity response surfaces are then defined
by combining the LF and ΔRt surfaces, and the surro-
gate-based optimization is done. Figure 15 shows the
resulting Pareto front. As this is rather far from the
actual HF evaluations done, an iteration is necessary.
Additional HF computations have been made for 5
points on the front, plus 9 other points selected for
identifying design trends. These new data permitted
to determine the RMS errors in the initial HF and
MF response surfaces, indicating again that the MF
approximation is much better for condition A, and
somewhat better for condition B. Still significant
errors were found for condition B for the front points.
In hindsight, a somewhat larger number of HF data
points at least for condition B would have worked bet-
ter, as was already indicated by the cross-validation
results.

All new HF points are then added to the data set,
and updated response surfaces are derived. Figure 15

also shows the second and final estimate of the Pareto
front.

For comparison, Figure 15 also shows the initial Par-
eto front estimates derived from an HF-only and LF-
only optimization. The HF front, based just on the 12
HF data points, is far off and has significantly different
parameter values, so it does not indicate the right

Figure 14. LF response surfaces (upper two surfaces) and ΔRt surfaces (lower surfaces) (increased by a constant). Labels indicate
(Vshape, TransomRound) values. Markers are data points, for variable Vshape and TransomRound. Left: condition A; right: con-
dition B.

Figure 15. First (MF1) and second (MF2) estimated Pareto
fronts from multifidelity optimization. Black dots: HF data of
1st round; black circles: added HF points in 2nd round. HF1:
estimated 1st front from HF-only optimization; LF: estimated
1st front from LF-only optimization. Large square is original
hull form.
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optimal design. Only upon iteration the HF optimiz-
ation converged rather slowly to the same location as
the second front from the MF optimization. Therefore,
clearly an HF-only optimization requires a larger num-
ber of data points. The LF-only optimization, based on
the 96 coarse-grid data points, is far off in absolute
resistance level but not bad when expressed as a percen-
tage of the coarse-grid resistance of the original design;
and does indicate the right parameter values.

For a selected point on the front, the resistance
reduction is 4.9% for condition A, 3.1% for B. As the
initial hull form was already a realistic practical design,
and in view of the small wave resistance and form fac-
tor of modern containerships, this is a satisfying
improvement. No constraint on initial stability has
been imposed, so this hull form is normally not prac-
tically acceptable yet but still provides useful design
information. It differs significantly from the initial
hull (Figure 16), having maximum V-shape of the
stern sections, and the transom edge at an intermedi-
ate height, as a compromise between both draft con-
ditions. The convexity of the stern buttocks had little
effect but permits to increase the displacement.

For condition A the transom is slightly wetted, as
for the initial hull. A substantial reduction of the
stern wave making is observed (Figure 17), in particu-
lar for the transverse wave components. For condition
B, the transom is dry and the transom edge is at a
higher position than desired, but due to the stronger
V-shape this is not too harmful. Again some reduction
of the stern wave making has been obtained. In view of
the limited share of wave resistance for this class of
ships, the differences in stern wave making do not
explain the entire resistance differences, and actually
the total-head loss in a transverse plane aft of the
transom also was found to be reduced. Therefore,
the optimized hull has both a smaller wave resistance
and smaller viscous losses.

The complete 2-objective optimization has thus
been done using, for each condition: 12 initial HF
computations, plus 5 computations for points on the
first estimated front; along with 96 LF computations.
This adds up to a total computation time correspond-
ing with 22 HF computations per condition. For a
single-fidelity optimization based on only HF compu-
tations, for this 4D design space, one would probably
need some 45 points (a DoE of 40 plus 5 Pareto front
points), therefore about twice the computational cost
of the multifidelity optimization.

7.5 Multi-objective multifidelity optimization of
a motor yacht

The next example, again from a practical project, is a
motor yacht with a bulbous bow and a deep and
wide transom, at Fr = 0.35 and 0.70. At both speeds
the transom was dry. The case could have been dealt
with by the potential/RANS multifidelity method of
Section 6, but we have used the coarse/fine RANS
approach here.

A 3-parameter hull form variation was defined,
with variations of the entrance angle, the aft buttock
shape and the transom immersion. A DoE of 48
coarse-grid and 12 fine-grid points was generated.
Coarse grids had 700,000 and 2.2M cells for the two
speeds respectively; fine grids 4.7 and 11.2 M cells.
Trim and sinkage were left free for both LF and HF.
For the higher speed, some computations did not con-
verge and just 40 coarse-grid and 8 corresponding
fine-grid points were available.

The correlation of the resistance values was very
good for the lower speed, and the ΔRt function was lit-
tle more than a constant. For the high speed, the cor-
relation was not particularly good, but still ΔRt was a
simple function, and deriving it from just eight points
seemed sufficient. The MF optimization yielded the
Pareto plot of Figure 18. Along the short front, the
transom immersion varies, with a minimum value
being best for the lower speed, a somewhat largerFigure 16. Initial and optimized hull form.

Figure 17. Stern wave pattern for original (top half) and opti-
mized design (bottom half), for condition A.
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immersion for the high speed. Optimization using
only the LF data did not lead to the same front, but
to minimum transom immersion for both speeds.

For a selected point on the front additional HF
computations have been done, yielding resistances
differing by just 0.17% and 0.06% from the estimates
based on the MF response surfaces. Large reductions
of the total resistance are achieved, of 14% and 4.5%
for the two speeds.

Therefore, the MF response optimization worked
very well in this case. With just 13 fine-grid calcu-
lations per speed for the 3-parameter 2-objective
optimization, this was the most efficient.

8. Discussion

In this paper we have proposed and demonstrated
multifidelity formulations for use in ship afterbody
optimization for minimum resistance. With the cases
considered, there are a few aspects to be discussed.

Two different LF methods have been used, suitable
for different applications. The potential-flow method
is limited to a certain class of cases, the coarse-mesh
RANS method seems more generally applicable but
is computationally more demanding. These methods
have been selected for their ability to well represent
the design trends of the HF method. As a matter of
fact, we observe a roughly linear correlation Rt_HF
(par) = ρ. Rt_LF(par) + ΔRt in most cases, with ΔRt
having little dependence on the parameters. The
‘scaled additive’ MF formulation we have used fits
this behaviour well and is straightforward.

As Toal (2015) demonstrates, the success of an MF
method depends quite strongly on the LF-HF corre-
lation. The same is observed in the cases considered,
with the example of Section 6.3 requiring a different
LF method and that of Section 7.4 suggesting to use
more HF points in the DoE for condition B. To obtain
sufficient correlation, it is important to make the LF
method accurate enough. For instance, the generation
of the coarse mesh RANS is not executed by simply
coarsening by a factor of 2 in all directions. Some
local hull features need more cells compared to others
in a coarse mesh, to capture the trends well enough.

The number of points in the initial DoE is of
importance for the overall efficiency. For well-corre-
lated LF and HF functions, Toal recommends to
spend a fraction fr of the total computation time to
the LF computations, with fr > 1.75/(1 + 1/Cr), Cr
being the relative cost of an LF computation compared
with HF. We moderately exceed this lower bound in
all cases.

The required number of HF computations, how-
ever, strongly depends on the case and the level of
LF-HF correlation. For the cases considered we have
indicated our assessment, but more experience is to
be collected. Furthermore, it is important to always
check the correlation and add more points if required.
Use of an extendable DoE along with cross validation
can be a good solution.

It is useful to compare the proposed multifidelity
method with single-fidelity optimization using just
HF or just LF data. Compared with HF, the advan-
tage is of course just in computation time, since
the optimum found should be the same. Compared
with LF only, however, the optimum can differ.
For the roughly linear LF-HF correlation that we
found for most cases, the location of the optimum
in the design space is frequently already predicted
by the LF method. This is the case for the examples
of Sections 6.2 and 7.4 in this paper. One might then
conclude that a LF optimization would suffice for
optimization of the afterbody design. However, in
any case, the resistance level and the amount of
resistance reduction obtained from LF would then
not be correct (e.g. Figure 7), and in a multi-objec-
tive optimization, the resulting distortion of the Par-
eto front could also lead to a different Pareto
optimum chosen.

Moreover, a ship afterbody optimization using only
potential flow, or RANS on very coarse grids, should
generally not be trusted. For the other examples in
this paper, the LF method does not correctly indicate
the optimum, and that of Section 6.3 indicates the mis-
leading result one might get.

Therefore, the addition of a limited set of HF points
to the larger set of LF points is needed to verify the
optimum found, the correlation between LF and HF
and the correspondence of design trends. Having
those HF points available, these also serve to derive
MF response surfaces, with their increased accuracy
and reliability.

9. Conclusions

This paper has discussed practically oriented ship hull
form optimization methods, which are being used in
practical ship design. Starting from a surrogate-
based global optimization using free-surface potential
flow calculations, similar methods based on RANS
computations have been set up.

Figure 18. Motor yacht case. Pareto plot, with initial design
(large square), fine-grid Design of Experiment (black diamond
markers) and estimated Pareto front (circles). Large diamond
marker is recomputed Pareto point.
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In all methods, a parametrization of deformations
of a given initial design is used. This is a parametric
blending of the initial hull form and several modified
hull forms. Where possible, the latter are selected
based on physical insight and design knowhow, from
analysis of computed results for the initial design;
and are simply created in the CAD system. This
method is most flexible, and generally leads to effective
hull form changes with a limited number of par-
ameters; and often, to simple trends against the par-
ameters, easily identified with few calculations. Thus,
the parametrization also contributes to the efficiency
of the optimization procedure.

For multi-objective optimization of ship afterbo-
dies, the computational effort for hundreds of RANS
computations could be prohibitive. Therefore, multifi-
delity (MF) techniques have been studied. The combi-
nation of a free-surface potential-flow code as a low-
fidelity (LF) method, and a RANS code as a high-
fidelity (HF) method, has been found to be very
efficient for a class of cases. The potential-flow results
are easy and cheap to obtain and permit a large
reduction in the number of HF computations. This
MF method is suitable for fairly slender ships at Fr
> 0.25, with dry transom flow, for which the viscous
resistance does not change appreciably by the vari-
ations applied and wave resistance changes are domi-
nant. The viability of this method can be assessed from
an initial comparison of the inviscid and viscous wave
pattern and flow. Successful applications to the 5415
case and a fast displacement vessel have been
discussed.

It has been shown how for a specific containership
this MF method failed due to the occurrence of wetted
transom flows in a part of the design space, causing a
change of wave resistance and viscous resistance not
reflected by the LF results. For ships and stern vari-
ations that possibly cause significant changes in the
viscous resistance, an alternative multifidelity formu-
lation is needed, and has been found in the use of
coarse-grid RANS computations as a LF method.
The coarse-grid generation is critical as it is not evi-
dent that design trends are well represented. A par-
ticular prescription has been found, leading to grids
with about 10 times fewer cells and computations ask-
ing 20–25 times less CPU time; but with the design
trends still corresponding well with those on fine
grids, with gradients often differing by 10–20%. In
the scaled additive MF formulation, the HF-LF differ-
ence often is a near constant function, efficiently deter-
mined by few HF computations. In some cases and
conditions, we found a poorer correlation of LF and
HF results, leading to a poorer performance of the
MF method.

The coarse/fine grid multifidelity optimization was
applied successfully to a containership and a motor
yacht, leading to significant resistance reductions.

For both cases, few HF computations sufficed to find
the optimum. For the container ship, the MF optimiz-
ation required about one half the computation time of
an optimization based on HF computations alone.
This method therefore is efficient, although not as
efficient as the potential/RANS MF method; but it is
more generally applicable.

In further practical applications, more experience is
to be collected. This should provide better insight in
the required number of points in the initial DoE’s,
and of the LF-HF correlation to be expected for var-
ious cases. Some attention is also desired for a proper
treatment of scatter in the data. With these and other
refinements we think that multifidelity techniques for
ship hull form optimization may contribute to a
further advance of practical ship afterbody design.
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