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1. Motivation

• CFD simulations require the assessment of

their numerical uncertainty to establish their

credibility

• Most of the existing methods for uncertainty

estimation require data in the so-called

``asymptotic range”

• This often means levels of grid refinement beyond

those normally used in practical applications

1. Motivation

• Uncertainty estimation for practical calculations

as to deal with several difficulties:

- Grids not sufficiently refined to attain the

``asymptotic range”

- Scatter in the data originated by lack of

geometric similarity, switches in the turbulence

models, post-processing...

• Develop a reliable procedure for uncertainty

estimation of practical calculations



2. Proposed procedure

• Power series expansions applied to data obtained
from grid refinement studies

• Contributions of round-off and iterative errors are

assumed to be negligible when compared to the

discretization error

• Definition of the typical cell size, hi, discussed at

the ASME V&V 2012 Conference 

2. Proposed procedure

• Error estimation

Estimated error of variable φ  (integral or local)

Solution of variable φ in grid i

Estimated exact solution of φ

Grid related constant 

Typical cell size

Observed order of grid convergence
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2. Proposed procedure

• Alternative expansions for error estimation
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2. Proposed procedure

• All error estimators are solved in the least-squares
sense 
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2. Proposed procedure

• Observed order of grid convergence p and standard
deviations σ of the fits are used to select error estimator
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2. Proposed procedure

• Alternative weighted fits also performed with

that lead, for example, to 
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2. Proposed procedure

• Monotonic convergence for p>0 or pw>0
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2. Proposed procedure

• Anomalous behaviour

- p<0 and pw<0 or impossible to determine

- Error may be estimated from fits with

fixed exponents
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2. Proposed procedure

• Uncertainty estimation intends to satisfy

95% of the times

• Quality of available data measured from 

and σ of the selected fit for error estimation
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2. Proposed procedure

• Uncertainty is obtained from the estimated error

and a safety factor

• Definition of the safety factor     follows the G.C.I of

P.J. Roache

- Reliable error estimate,  

- Otherwise, 
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2. Proposed procedure

• “Good” error estimation,

• “Bad” error estimation,

• For data without noise and monotonic convergence

the method reduces to the G.C.I. 
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3. Examples of application

1. Two-dimensional Manufactured Solutions

that mimic a near-wall turbulent flow

2. Turbulent flow over a flat plate

3. Flow over a backward facing step

4. Flow around a tanker at model scale

Reynolds number



3. Examples of application, 2-D MS’s

3. Examples of application, 2-D MS’s

• Sets of 21 geometrically similar grids with

different near-wall spacing

• Uncertainty of mean flow quantities estimated

for three levels of grid refinement:

• Check and the error estimate used to

obtain the numerical uncertainty
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3. Examples of application, 2-D MS’s ux

3. Examples of application, 2-D MS’s ux
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3. Examples of application, Flat plate

• Sets of 13 geometrically similar grids with

different near-wall spacing for Reynolds

numbers of 107, 108 and 109

• Spalart & Allmaras and SST k-ω turbulence models

• Uncertainty of mean flow, turbulence and integral

quantities estimated for three levels of grid refinement:

• Check overlap of error bars and the error estimate

used to obtain the numerical uncertainty
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3. Examples of application, Flat plate



3. Examples of application, Flat plate

3. Examples of application, Flat plate ux
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3. Examples of application, Flat plate
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3. Examples of application, Flat plate

Inconsistent

error bars

(non overlapping)



3. Examples of application, Tanker

• 4 sets of 6 nearly-geometrically similar grids

with 0.9×106 to 8×106 cells covering a grid

refinement ratio of 2

• SST k-ω turbulence model

• Uncertainty of mean and turbulence flow quantities

at the propeller plane and resistance coefficients

• Check overlap of error bars and the error estimate

used to obtain the numerical uncertainty
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3. Examples of application, Tanker 6
106.4 ×=Rn



3. Examples of application, Tanker 6
106.4 ×=Rn

3. Examples of application, Tanker 6
106.4 ×=Rn



4. Final Remarks

• We presented a procedure for the estimation of

the numerical uncertainty of any integral or local

flow quantity based on grid refinement studies 

• The uncertainty is based on an error estimation

multiplied by a safety factor

• The error is estimated with power series expansions

as a function of the typical cell size, which are fitted

to the data in the least squares sense

4. Final Remarks

• Several alternative formulations are involved, including

weighted and non-weighted fits of expressions with

different exponents in the leading term of the series

• The selection of the best error estimate is based on

the standard deviation of the fits

• For well-behaved data sets, i.e. monotonic convergence

with the expected observed order of accuracy and no

scatter in the data, the method reduces to the well

known Grid Convergence Index


