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1. Introduction

• Development of a reliable CFD solver requires

thourough Code Verification to guarantee the

correctness of the code and to assess its grid

and time-step convergence properties

• Code Verification of a (U)RANS solver requires

the use of the Method of the Manufactured

Solutions to allow the evaluation of

discretization errors

2. Manufactured Solutions

• Two-dimensional solutions that mimic near-wall,
statistically-steady, incompressible flows

• Flow field includes a “linear sub-layer” for y+<5

and the “skin friction coefficient” at the wall matches

an empirical correlation for a flat plate turbulent 

boundary-layer

• Turbulence quantities of eddy-viscosity models

are also manufactured (but not used in the present

exercise)



2. Manufactured Solutions

Cp: 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14
MS1

2. Manufactured Solutions

Cp: 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.275 0.3 0.325 0.35
MS3



3. ReFRESCO

• URANS solver with a fully-collocated

arrangement and a face-based data structure

• Finite-volume discretization in the physical space

• Able to handle volumes of arbitrary shape, which

means that it is suitable for complex geometries

• Preserving second-order grid convergence 

(at internal and boundary cells) is a challenge 

4. Non-orthogonality corrections

• Diffusion term of general transport equation

• Finite-volume discretization
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4. Non-orthogonality corrections

• Present work focus on the determination of the

normal derivative of a variable     at a face

• Second-order accurate determination of 

is supposed to use only the values at the two

neighbouring cell faces
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4. Non-orthogonality corrections

• Interpolation of 
jfφ∇
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4. Non-orthogonality corrections

• Interpolation of 
jfφ∇
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4. Non-orthogonality corrections

• Interpolation of           , TYPE 1
jfφ∇
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4. Non-orthogonality corrections

• Interpolation of           , TYPE 2
jfφ∇

4. Non-orthogonality corrections

• Interpolation of           , TYPE 3
jfφ∇
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4. Non-orthogonality corrections

• Interpolation of           , TYPE 4
jfφ∇
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5. Results

• Grids



5. Results

• Grids

5. Results

• Determination of L2 and L
∞

norms of the errors of

mean flow quantities                  

• Observed order of grid convergence and error

constants determined from data of six finest grids

• Second-order QUICK scheme in convection

• No excentricity issues for present grid sets
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5. Results

5. Results MS1, Set A2
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5. Results MS1, Set A2

5. Results MS3, Set A2
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5. Results MS3, Set A2

6. Conclusions

• Non-orthogonality corrections are mandatory to

obtain a consistent discretization scheme

• Non-orthogonality should also be corrected at

boundary faces. However, the “boundary error”

may be negligible

• Thorough Code Verification is essential for

the credibility of any CFD code
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