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Abstract: Marin is designing and building a modular autonomous underwater vehicle
(mAUV). The vehicle will serve as a platform for research projects to be carried out in our
model test basins. The modular design will enable future extensions with additional sensors and
actuators. The design of the vehicle and its control system is aimed at combining capabilities
for position keeping (zero speed) and track sailing (medium and high speed). The vehicle is
controlled in all 6 degrees of freedom, without any a-priori limitations.
This paper describes the control design of the mAUV. A feedback controller is designed and
its robust stability analysed under parametric uncertainty and dynamic uncertainty due to the
non-linear behaviour of its thrusters and the manoeuvring characteristics. As the system is
not limited to small angles, the attitude is determined with quaternions to avoid singularities.
Simulations show that the controlled system performs well at keeping its track, but currently
the tracking performance degrades at at higher velocities.
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1. INTRODUCTION

The Maritime Reasearch Intstitute Netherlands, Marin,
is designing and building an autonomous underwater vehi-
cle (auv). The vehicle will serve as a platform for research
projects to be carried out in our model basins. The project
foreseen with the auv are concerned about i) the hydrody-
namic forces acting on a relative small submersible vehicle
over an extended speed range: ii) the influence of the
control and actuators on this behaviour, and iii) research
on autonomous systems in relation to other (autonomous)
vessels.

As the intended use and its missions are diverse, the auv

has to be modular in design. The sensors, actuators and
configurations of them should be interchangeable, while
the software architecture should support this. The hard-
ware and software design is detailed in (Cozijn et al., 2019).
A cad drawing of the system is shown in Fig. 1. The auv is
slightly longer than 3 meters, and is moved by 12 thrusters.
The subject of this paper is the control design of the auv.
A 2-degree of freedom controller is proposed: a feedback
controller to counter disturbances and give some minimal
performance, even if there are unmodelled dynamics; and a
(future) feed-forward controller to improve the (tracking)
performance (Skogestad and Postlethwaite, 2007).

The feed-forward controller needs a model of the hydro-
dynamic and hydrostatic forces acting on the auv. This
information is yet unavailable and will be collected during
the operation of the auv. These values will be compared
to the calculated values with cfd. A feedback controller
is needed such that the auv can move in a controlled way

Fig. 1. A cad drawing of the mAUV

in our model basins. A common approach for feedback
control of an auv is sliding mode control, see among
others (Yoerger and Slotine, 1985; Breivik and Fossen,
2006). This approach incorporates the non-linear dynamics
into the feedback controller. In order for the approach
to work, the control model needs to be simplified such
that all the states are measurable (Logan, 1994). A sliding
mode controller can show chatter in the control signals
if it is tuned incorrectly. As we plan to counter the non-
linearities with a feed-forward controller in future work,
incorporating them into a sliding mode controller is not
needed, and a simpler controller without the possibility of
this chatter is preferred.

Furthermore, as the missions can include both track sailing
to an object of interest, and then the assessment of this
object from different angles. The control should be able to
accommodate fast sailing and 6 dof low speed hovering.
An example of this behaviour might occur at the detection
and recognition of sea-mines. The auv has to go to the
mine, and then inspect the object from all possible angles.
Hence, its attitude cannot be given in Euler angles as they



can become singular, known as the gimbal lock. In this
work we use quaternions as described by Fossen (2011).

In this paper we will describe the design and analysis of a
feedback controller that is robustly stable for unmodelled
dynamics including the difference in behaviour at different
velocities. Although this paper will focus on the design and
analysis, the controller needs to be easy to tune when it is
used for the actual auv tests in our model basins.

In order to come to a controller, we start with the
description of our control model in section 2. We want
feedback from our global position and attitude, as well as
from body fixed angular velocities. This means that we
have to map the global forces and torques to body fixed
forces and torques. A simple linear model results on which
which we base our control design.

However, the system under investigation contains uncer-
tainties and we need to analyse these to test if the con-
troller remains stable. Some of these uncertainties stem
from unknown parameters, such as added mass and damp-
ing. Another source of uncertainty is unmodelled dynam-
ics. The Coriolis/centrifugal forces are dependent on the
velocity but we model these as uncertainties. The same
holds for the non-linear behaviour of the thrusters. A set
of experiments to find an uncertainty model of the thruster
is provided in section 3.

In section 4 a set of state feedback controllers is designed
by means of pole placement. The robust stability of these
controllers is tested on the uncertainty model of the auv

deduced in the previous section. A set of performance
simulations is done on a detailed model to assess the
performance of the selected controller.

2. CONTROL MODEL

In order to use linear techniques such as pole placement,
a linear control model is required and a full state vector.
The mAUV’s state vector is available as the global posi-
tions are measured with a camera system in our towing
tanks (Cozijn et al., 2019). A state feedback controller
is used to utilise all this information. If the state is not
measured, it can be estimated with a state estimator.

The equations of motion for a 6 dof auv are given
as (Fossen, 2011):

η̇ = Jq(η)ν (1a)

Mν̇ +C(ν)ν +D(ν)ν + g(η) = τ
bf . (1b)

In these equations, the vector η denotes the global position
and attitude in quaternions, ν the body fixed (angular) ve-
locity, and τ

bf the body fixed actuator forces and torques.
M,C(ν) and D(ν) denote the mass, Coriolis/centripetal
and the damping matrix, respectively. The added masses
are included in these matrices. The vector g(η) represents
the hydrostatic forces. The matrix Jq(η) denotes the atti-
tude dependent transformation matrix specified in quater-
nions. Eq. (1a) can be split into a part for translations and
a part for rotations:
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in which the state η contains a position and a quaternion
vector p and q, and the state ν is split in a velocity v and
angular velocity ω part.Rn

b
(q) denotes the rotation matrix

formed from quaternions, and Tq(q) the transformation
from angular velocities to quaternion derivatives. Both
matrices are given in (Fossen, 2011). The last equality
can be found by comparing the matrix Tq(q) with the
quaternion multiplications, see among others (Dam et al.,
1998; Jensen and Wisniewski, 2001; Graf, 2008).

We define the error for the translational part as:
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b
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then the error dynamics for a constant reference position
becomes:
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=− (ω × et)− v, (4c)

in which S(ω) is the cross product matrix. Equivalently,
if we define the error for the rotational part as:

er = 2P log(q̄qsp). (5)

In this equation P is a 3×4 matrix that selects the
last three elements of the quaternion. For a unit quater-
nion, the logarithm of a quaternion results in log(q) =
[0, αn] (Dam et al., 1998). Rotation of an angle α over
the Euler axis n is similar as the rotation provided by
the quaternion q. Hence, this error indicates the angle
and axis over which the mAUV has to rotate to come to
the set point attitude. With this error, the error dynamics
become:

ėr = 2P
1

q̄qsp

˙̄qqsp = 2P
(
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ω
ef is the earth fixed angular velocity. The body fixed

rotation in the set point frame is equal to the rotation in
the ship fixed frame for this rotation, as the rotation is
around the Euler axis from the ship fixed frame to the
set point frame. This allows for the transition from (6b)
to (6c). The combined error dynamics become:

ė =

[

ėt

ėr

]

=

[

(ω × et)− v

−ω

]

(7a)

Mν̇ +C(ν)ν +D(ν)ν + g(η) = τ
bf (7b)

As we will move with relative slow speed and want our
damping from the controller, not from the physical damp-
ing, the Coriolis/centripetal forces will be neglected, and
we will design our controller with the damping matrix set
to zero. The first term on the right hand side of (7a) can be
compensated for by applying an additional force, and will
be therefore ignored for the rest of the work. Finally, the
mAUV is designed to have the buoyancy point at the cen-
tre of gravity, possible with the help of the ballast tanks.
This will result in small gravitational forces. The errors
that are introduced by these assumptions are countered by



Table 1. uv properties and velocity range.

mass added mass damping velocity
[kg] or [kg] or N/(m·s)] or [m/s] or
[kgm2] [kgm2] [N/(rad·s)] [rad/s]

m = 236 Xu̇ = 40.0± 10% Xu = 5± 25% u = [−0.25, 1.0]
m = 236 Yv̇ = 200± 10% Yv = 7.5± 25% v = [−0.2, 0.2]
m = 236 Zẇ = 200± 10% Zw = 7.5± 25% w = [−0.2, 0.2]
Ixx = 6.6 Kṗ = 0.0− 5.0 Kp = 5± 25% p = [−0.2, 0.2]
Iyy = 213 Mq̇ = 125.0± 10% Mq = 7.5± 25% q = [−0.2, 0.2]
Izz = 213 Nṙ = 125.0± 10% Nr = 7.5± 25% r = [−0.2, 0.2]

introducing uncertainty in the model, as will be discussed
in the next section. The feedback law can be designed with
linear control as τ

bf = Ke. The advantage of using the
transformed output, is that especially for the rotations,
we lost the non-linear term with the unity constraint on
its magnitude.

3. UNCERTAINTY MODELLING

The state controller does not explicitly incorporate the
uncertainty in its design. We want our feedback system
stable for uncertain effects, and in the next section the
robust stability against the uncertainties is analysed. Two
sources of uncertainty are considered: i) parametric uncer-
tainty and ii) dynamic uncertainty.

3.1 parametric uncertainty

The parametric uncertainties can directly be used in the
equation of motion. The values of the parameters as well
as their assumed uncertainties are given in Table 1. The
uncertainty of the mass and added mass is combined
in the uncertainty for the added mass. The uncertainty
in the damping is chosen to encompass both the linear
and the quadratic damping terms. They are modelled as
uncertainty, and are not treated as velocity dependent.

The controller does not incorporate the actual velocity,
but it should be stable for the velocity ranges during
operation. The Coriolis matrixC(ν) is velocity dependent,
and changes the behaviour of the system due to its velocity.
The auvs velocity is therefore modelled as an uncertain
parameter that influences the matrix C(ν).

Several velocity ranges are used to test at what speed the
robust stability becomes a problem. Next to the first range
given in the table, the second range sets the maximum
surge velocity at 0.25 m/s, the third range bounds all the
velocities between -0.1 – 0.1 m/s, and the last range makes
all the velocities equal to zero.

3.2 dynamic uncertainty

Next to a set of parametric uncertainty, we have a dynamic
uncertainty due to the use of thrusters. A set of Blue
Robotics T200 thrusters is used to deliver thrust to the
auv. These thrusters were equipped with hall sensors
to tightly control their angular velocity. The thruster
dynamics are dependent on the rotational velocity of the
thrusters as well as on the water speed relative to the
propeller blades, as noted in (Yoerger and Slotine, 1985;
Healey et al., 1995). We want to identify the generated
thrust as function of frequency at different rotational
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Fig. 2. The response of the thrust and the rotational
velocity due to driving motor torque. Different offset
torques are shown.

velocities. Again, the state feedback controller does not
incorporate this information, so we model it as uncertainty.

A single thruster, disassembled from the mAUV, is con-
nected to a fixed thrust sensor and placed in our basin. The
basin’s length of 250 m minimises the chance of residual
flow. The thruster is not moving. A constant electrical
current, related to a constant motor torque, is applied to
the thruster. A set of sinusoid currents are superimposed
on this. The amplitude of these sinusoids was chosen as
small as possible, but still resulting in a clear response.
The direction of rotation did not change during the ex-
periment. The excitation is known as multisines (Pintelon
and Schoukens, 2012).

The thrust, F , current, I, and angular velocity, ω, were
measured at 100 Hz. The amplification at the excitation
frequencies for current to thrust and current to rpm were
calculated. The results of these amplifications are shown
in Fig. 2a and b. The response for several current offsets
are shown in this figure.

Fig. 2a shows that the thrust at low frequencies is nearly
independent from the motor torque, i. e. the motor torque
is proportional to the motor current. This behaviour
corresponds with the above cited literature. The dry
friction will give some small differences though. The thrust
is also known to be quadratically related to the angular
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Fig. 3. scheme to calculate the thrust based on the re-
quested thrust. Gray blocks are known. The lead-lag
controller is designed to have a bandwidth of 10 Hz

velocity. The angular velocity amplification will therefore
be smaller for larger motor torques. This can be observed
in Fig. 2b.

The dynamic response is measured for a positive and
negative direction at 5% of the motor current. These
lines fall on top of each other. There is no directional
difference in the dynamic response. There was a small
difference observed in the steady state response, although
these measurements are not shown here.

Furthermore, a resonance – anti-resonance can be seen
in the transfer from the motor torque to the force at 20
and 30 Hz. This is attributed to the stiffness in the mea-
surement system (Koster et al., 1998). A vibration around
that frequency was also observed when the mechanical
system was hit before the experiments.

The angular velocity of the thrusters will be controlled
during the operation of the auv to compensate for the dry
friction. The relation between steady state angular velocity
and thrust is known to be quadratic, and its coefficient has
been measured. The uncertainty between the thrust and
requested thrust needs to be determined. Refer to Fig. 3.
The grey blocks in this figure were measured.

Based on the transfer from current to thrust, |F/I|, and
current to rpm, |ω/I|, we can construct the relation
between thrust and rpm, |F/ω|, the utmost right white
block. This can be done by dividing the magnitude of the
transfer function of Fig. 2a by 2b for each frequency fi as:
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As we will control the angular velocity of the thrusters
during the operation of the auv, the next step is to
determine the response of the rpm to the requested rpm.
For this, we fit the response ω/I with a first order response
so that we also have the phase of the transfer function.
These fits are shown in Fig. 2b as dashed lines. A simple
lead-lag controller tuned at 10 Hz is used to control the
thruster. The controller is based on the fitted coefficients
is:

C(s) =
20s+ 20

s2 + 10.1s+ 0.1
. (9)

Finally, at zero frequency, we know how the thrust is
quadratically related to the rpm for each of these offsets,
|Fr(0)/ω(0)|. With this relation, the requested torque and
the delivered torque can be made identical at steady
state conditions. With the closed loop response and the
calculated transfer from rpm to thrust, we can calculate
the graphs in Fig. 2c for the requested thrust to actual
thrust.

For the uncertainty analysis the transfer between thrust
and requested thrust is modelled as a first order response

with multiplicative uncertainty. This fitted Fig. 2b well for
a first order transfer function:
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(1 +W (s)∆(s)) (10)

The realisations from the measurements for W (s)∆ are
shown in Fig. 2d. In this figure we can see that the un-
certainty at low frequencies is approximately 5%. The un-
certainty at the bandwidth of the controlled system peaks
at 75%. After the bandwidth, the uncertainty depends on
the surrounding, but for this open water test it remains at
75%. The uncertainty is modelled as:

W (s) =
τs+ r0

(τ/r∞)s+ 1
, ‖∆(s)‖∞ ≤ 1, (11)

with τ = 1/5, r0 = 0.05, r∞ = 0.75. The weighing matrix
is plotted in Fig. 2d as a black dashed line. The body
fixed forces in the equation of motion are pre-multiplied
with this uncertainty model.

4. CONTROL DESIGN

The sensors in the auv measure the global position,
attitude and body fixed (angular) velocities. We use these
signals to design a state feedback controller. The gains
are calculated for low speeds, and we want the damping
from the controller, so we set the damping matrix in the
design model to zero. The thruster dynamics are not used
in the design, which will limit the upper bandwidth. The
poles are placed with Matlab’s pole placement algorithm.
A set of controllers is designed with increasing location
of the poles, and hence bandwidth. The poles are located
at the same (negative) real location for each individual
controller in the set. Although the poles associated with
the body fixed velocities deviate 1% as the pole placement
algorithm could not handle the multiplicity of the pole
location.

For each of these controllers the robust stability is tested
as described in (Skogestad and Postlethwaite, 2007) with
Matlab’s mussv command. The uncertainty is structured,
and is treated as such. The model for the equations of
motion are pre-multiplied with the uncertainty model of
the thrusters. The model equations (7) are used for this.

The maximum value of upper bound of the µ-norm for the
set of controllers is shown in Fig. 4. The value of the norm
should be below one for guaranteed robust stability. If it
is larger than one, it is not guaranteed to be stable. The
norm is calculated for four velocities as told in section 3.1.
The upper bound of the µ-norm as function of frequency
at ux = 0.25 is shown in Fig. 5 for some of the controllers.
The bold line corresponds to a pole placement at -1, and
is below one for all the frequencies.

Interesting to note is that there is a minimal needed
bandwidth of the controller before the system becomes
robustly stable, even if the system is nominally stable.
Inspection of Fig. 5 shows two peaks, especially clear for
a pole placement at -0.1. These occur at high (forward)
velocity. If all the velocities are set to 0.25 [m/s] and
0.25 [rad/s], and the controller poles are placed at -
1, then the corresponding output motion can be found
from the singular value decomposition of the response at
that frequency. The first mode corresponds to a motion
in y, and z direction, with an accompanying rotation
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around these axes. The auv is wagging its tail. The
second mode corresponds to a rotation around the x axis.
The saturation due to the thrusters’ maximum velocity
can further degenerate the performance. The rotation
and translation in the y, and z direction can also be
explained due to the large negative Munk moment for this
hydrodynamic design. The (added) mass in x direction is
much smaller than the (added) mass in y, and z-direction.

If the velocity is decreased, these vibrational modes be-
come less prominent. A lower bandwidth becomes enough
to counter the effect, as can be seen in Fig. 4. On the
other hand, if the bandwidth becomes too large, then the
uncertainty in the thruster dynamics limits the robust
stability. Fig. 5 shows that for higher bandwidths the µ-
norms maximum value occurs at the frequencies at which
the thrusters uncertainty is large.

These results lead to a tuning approach for when the auv

is tested in the basins: start at low velocities and increase
the bandwidth of the controller until the thruster cannot
cope with the control signals. Then we can increase the
velocity until the auv cannot keep its course. This is the
maximum velocity. This tuning can be done when the
system is tested in the basins.

5. PERFORMANCE SIMULATION

The controller is tested on a simulation model of the auv.
The simulation model is a detailed version of the control
model. The simulation runs in xmf, an in-house simulation
suite for marine vessels and structures with an emphasis
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Fig. 6. Top view of the path to test the control perfor-
mance. After the spiral, the auv decreases its forward
velocity while it simultaneously goes up for 1 m.

on hydrodynamic validated models (Ypma and Abbing,
2012). The effects that are incorporated in the simulations
are the hydrostatics based on the 3d cad design of
the auv. Furthermore, the interaction between the flow
direction and the thrusters is included (Karlikov and
Sholomovich, 1998), as well as the measured thrust and
torque for specified angular velocity in an identification
experiment. For more details, see (Cozijn et al., 2019). The
calculated damping and added mass are estimated based
on an empirical manoeuvring model, and are included in
the simulation model as well.

The path as shown in Fig. 6 is used as desired track for the
auv to follow. At each time step, the global positons and
body fixed velocities are provided. Along this path, the
forward velocity increases linearly, and a lateral velocity is
added as if it has to compensate for a global current field.
The turning rate is kept constant. After two circles, the
auv brakes, and moves one meter in the direction of the
surface. This cannot be seen in Fig. 6, but it is shown in
the set points as function of time in Fig. 7. The maximal
surge velocity is set to 0.5 m/s, the maximum sway velocity
to 0.1 m/s and the yaw rate to 2π/100 rad/sec. This
track is selected to show the increase in error due to the
forward velocity. The controller is tuned by increasing the
bandwidth as described in previous section. The poles were
placed at -1. For larger values the thrusters had difficulties
generating the required thrust in a timely fashion, and the
simulation time step started to become prohibitively small
to simulate the stiff system.

Fig. 7 and 8 show the translational behaviour of the auv

and the accompanying error. The dashed lines show the
reference signal, and the solid lines the measured signals.
The tracking of the path is as expected: at lower velocities
the path is tracked correctly, while at higher forward
speeds the tracking error increases. The attitude behaviour
is not shown here, but behaves similarly. The position as
well as the attitude based on the quaternions are tracked
and remain stable in this velocity range. A jump in the
error can be observed at t ≈ 200 s, which is caused in a
jump in the acceleration.

6. CONCLUSION

In this paper a feedback controller is designed for the
control of an auv. It is based on a pole placement al-
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gorithm and uses the global position and attitude signals
to get the system to where it needs to be. It uses the body
fixed (angular) velocity signals to realise damping. All the
attitude are specified in quaternions, so that all attitudes
are possible without the possibility of a gimbal lock. The
control has been tested on a detailed simulation model,
and the system was capable of tracking its path.

The controller will be used when the auv is tested in
our basins. One of these tests will be to determine the
hydrodynamic coefficients for a feed forward controller.
For this aim, it is important that the system is robustly
stable for the uncertainties in the model, as well as
general unmodelled dynamics. This has been tested, and

for limited velocities the system is robustly stable. For
larger velocities it was not guaranteed to be stable, nor
guaranteed to be unstable. The bandwidth of the controller
is bound from below by the vibrational modes due to
the Coriolis/centrifugal forces: the auv starts to wag.
The bandwidth of the controller is limited from above
due to the uncertainty in the thrusters. This allows for
simple tuning of the controller: increase the bandwidth
at low velocities until the thrusters cannot cope with the
commands any more. The controller is implemented in our
in-house simulation environment. Due to the split of the
controller and the ship model, we can directly use the
developed controller on the real auv. This allows us to
start researching the hydrodynamic effect acting on an
auv the moment the hardware is finished.
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