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Figure 2.3: Eigen-values of the discretized free-surface condition including forward

speed U = .045.

Now the water surface is discretized using an equidistant grid, thus yield-
ing a matrix equation. Figure 2.1 shows the inverse of the characteristic
determinant of this equation, with the peaks representing the eigen-values
of the discretized free-surface condition. They were calculated for a one-
dimensional free-surface; the wave-number k was based on ω = 10, which
is a middle frequency in chapter 3. It may be seen that the eigen-values
are indeed purely imaginary, and close to the analytical value of λ = 10.
Figure 2.2 shows that in the case of forward speed, some eigen-values are
shifted along the imaginary axis, as may have been expected, because the
frequency of encounter depends on the velocity. These eigen-values were
calculated assuming that the steady potential equals the undisturbed po-
tential Ux. The derivatives where approximated by their standard second-
order difference schemes.
However, Figure 2.3 shows, that for higher velocities the eigen-values are
shifting from the imaginary axis onto the real axis. Unfortunately, some of
these eigen-values have positive real part. Note that this forward speed is
not very high. For the two-dimensional problem considered in chapter 3,
this would mean a Froude number of 0.06, which is quite low compared to
the maximal Froude number used in that chapter: Fn = 0.14.

The effect of the speed and the grid size on the eigen-values is shown in
Table 2.1. When no forward speed is present, the effect of the grid size
on the eigen-values is negligible. However, when forward speed is included,
reducing the grid size causes the eigen-values to become real and positive.
This implies that, whatever speed is used, reducing the grid size will even-
tually make the differential equation unstable. Note that this conclusion
may be drawn independent of the time step, because no time discretization
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Table 2.1: Eigen-values of the free-surface boundary condition for several speeds and

grid-sizes.

U = 0 U = .05

h = .03 h = .015 h = .0075 h = .03 h = .015 h = .0075

10.04i 10.07i 10.14i 12.03i 13.28i 15.32i
10.04i 10.06i 10.12i 11.75i 12.65i 13.67i
10.03i 10.05i 10.09i 11.34i 11.71i 11.17i
9.98i 9.95i 9.88i 10.84i 10.60i 10.57i
9.98i 9.96i 9.90i 10.57i 10.57i 8.13i
9.99i 9.97i 9.93i 10.30i 9.46i 4.78i

10.02i 10.03i 10.05i 9.79i 8.41i ±1.88
10.00i 9.99i 9.97i 8.81i 7.56i ±4.21
10.01i 10.01i 10.01i 9.02i 6.55i ±5.31
10.01i 10.01i 10.01i 9.36i 6.93i ±4.99

has taken place yet. These results suggest that the stability is a function
of the grid Froude number, Fnh = U√

g∆x
. Although the smallest grid size

used in Table 2.1 may seem very small, this same grid size is used in the
calculations in chapter 3 for higher frequencies.
The fact that some eigen-values have positive real part, implies that the
differential equation has exponentially increasing solutions, which are ob-
viously unphysical. Numerically integrating this boundary condition will
therefore give rise to instabilities, simply because the equation itself is un-
stable. Thus another algorithm has to be found to integrate the time-
dependent equations, without integrating the boundary conditions them-
selves.

It may seem surprising that condition 2.3 can not be integrated stably.
After all the condition can be rewritten as

(

∂

∂t
+ U

∂

∂x

)2

φ + g
∂φ

∂z
= 0 .

The term between the brackets can be seen as a derivative in a moving
frame of reference, and condition 2.3 can therefore be transformed into
its zero-speed equivalence. Thus it should be possible to integrate the
Neumann-Kelvin condition stably. However, it should be noted that this
is only possible using the substantial derivative explicitly. In the above
analysis this has not been done, because the free-surface condition used
in the actual computations of the next chapters, condition 1.12, can not
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be rewritten in terms of substantial derivatives. Thus the stability of the
Neumann-Kelvin condition has been analysed using straight-forward dis-
cretizations of the separate terms.

Nakos [14] still uses the above given algorithm, in spite of presence of for-
ward speed and the use of condition 1.12. He states that he had troubles
with instabilities, but has overcome them with a filtering technique. As
may be concluded from the above, Nakos filtered out instabilities which
where inherent to his equations and his way of integrating them. This
leaves him with no guarantee that his solution is correct, because filtering
affects the solution of a problem considerably. Furthermore he states that
his algorithm can only be stable for decreasing grid sizes, if his time step is
reduced simultaneously. We think, though, that his algorithm is only sta-
ble, due to numerical damping of his time integration scheme. Moreover,
a scheme which becomes unstable when reducing the grid size without re-
ducing the time step, is highly undesirable. Therefore we oppose the use
of this algorithm.

The failure of the above algorithm may be explained by the following rea-
soning. The Laplace equation has harmonic functions as solutions. The
boundary conditions serve to determine what harmonic function is the over-
all solution of the complete system. Solving the Laplace equation and the
boundary conditions separately, can be viewed as satisfying the boundary
condition with a harmonic forcing function. The solution will then be a
superposition of a harmonic function and the eigen-functions of the differ-
ential operator. In the absence of forward speed, these eigen-functions are
harmonic as well, and determine the dispersion relation. However, in the
presence of forward speed not all eigen-functions of the free-surface condi-
tion are harmonic; some are exponentially increasing and some exponen-
tially decreasing. This means that at every time step an error is introduced
which disturbs the accuracy of the solution. This also explains why fil-
tering may be successful. It also suggests that a better algorithm may be
found combining the Laplace equation and the boundary conditions, thus
imposing harmonic solutions to the boundary condition.

2.3.2 New algorithm for forward speeds

As concluded in the previous section, the boundary condition at the free
surface can not be integrated separately. However, assuming that our model
is a good representation of physics, all equations together have a stable so-
lution. This indicates that we have to combine the Laplace equation and
the free-surface boundary condition to overcome non-physical instabilities.
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Hopefully, the unwanted eigen-modes of the free-surface condition are sup-
pressed by the Laplace equation.

The discretized Laplace equation is a linear combination of the potentials
and their normal derivatives. The same is true for all boundary conditions.
Thus we may eliminate one of the unknowns per element in the mesh,
leaving us with one combined equation. This equation, still depending on
time, may then be integrated stably. To illustrate this method, it will be
outlined for a two dimensional case, where the steady potential has been
approximated by the undisturbed potential, as before.

First we make
∂φ

∂n
explicit:

∂φ

∂n

∣

∣

∣

∣

i+1
= −

1

g

{

∂2φ

∂t2
+ 2U

∂2φ

∂x∂t
+ U2 ∂2φ

∂x2

}∣

∣

∣

∣

∣

i+1

, (2.4)

with subscripts denoting the time level. For convenience we split up all
variables into a free-surface part and a remaining part:

~φT =

(

~φf
T

| ~φr
T
)

.

By doing the same for the matrices and substituting the value of
∂~φf

∂n
we

get

Af
~φf ,i+1 +

1

g
Bf

(

~φf ,tt + 2U~φf ,xt + U2~φf ,xx

)

i+1

+Ar
~φr,i+1 = Br

~φr,n,i+1 .

The second-order time derivative can be discretized by a second-order dif-
ference scheme

∂2~φ

∂t2

∣

∣

∣

∣

∣

i+1

=
1

(∆t)2

(

~2φi+1 − 5~φi + 4~φi−1 − ~φi−2

)

+ O
(

(∆t)2
)

,

and the first-order derivative by its usual backwards second-order difference
scheme. The spatial derivatives can all be approximated by second-order
differences, while the values of the potential on the edges are extrapolated
from the intersecting boundary. Applying this to the above equation and
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sorting the potentials according to their time-levels we get

{

Af +
1

g
Bf

(

2I

(∆t)2
+

6U

∆t
C1 + U2C2

) ∣

∣

∣

∣

Ar

}

~φi+1 =

{

1

g
Bf

(

5I

(∆t)2
+

8U

∆t
C1

) ∣

∣

∣

∣

0

}

~φi+

{

1

g
Bf

(

−4I

g(∆t)2
−

2U

∆t

) ∣

∣

∣

∣

0

}

~φi−1+

{

1

g(∆t)2
Bf

∣

∣

∣

∣

0

}

~φi−2 + Br
~φr,n,i+1 .

The matrices C1 and C2 result from the discretization of the spatial deriva-

tives. So now the unknown
∂~φf

∂n
has been eliminated. In the derivation we

used the approximation Ux for the steady potential. This was done to keep
the formulae short and comprehensible. In the numerical calculations, how-
ever, the double-body potential has been used.
The same procedure can be repeated for the artificial boundaries. The
second derivative in the normal direction can be replaced by the second
derivative in the tangential direction by means of the Laplace equation.
This leads to the following overall matrix equation:

A1
~φi+1 = A2

~φi + A3
~φi−1 +~fi+1 , (2.5)

with ~f a time-dependent vector, resulting from the body boundary condi-
tion and parts of the spatial derivatives.
This time integration method seems to be stable for all time steps and
mesh sizes. The eigen-values of this difference equation are found to be
inside the unit circle for several tries of time steps, grid sizes and velocities.
Unfortunately, no proof can be given of the stability.

2.3.3 Suggestion concerning time integration of non-linear

equations

The algorithm proposed in the previous section, is based on eliminating
one of the unknowns from the discretized Laplace equation by the bound-
ary condition. In our case, this could be done fairly easily at the free
surface, because our normal derivative equals the z-derivative. However,
when integrating the non-linear equations this is no longer the case.
A possible way to overcome this, is to transform the global coordinates
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(x, y, z) into local coordinates (t1, t2, n) at each element and to use these
new coordinates to transform the boundary condition. Then the tangential
derivatives and the time derivatives can be discretized in the same way
as has been done in the linear case or in the case of non-linear boundary
conditions without forward speed. Eventually, this will lead to a boundary
condition of the form

C1
~φi+1 + C2

~φi + C3
~φi−1 + C4

~φi−2 + D1
~φn,i+1

+D2
~φn,i + D3

~φn,i−1 + D4
~φn,i−2 = ~0 . (2.6)

Again, one of the two unknowns, ~φn,i+1 or ~φi+1, can be eliminated. The
other terms are of previous time levels and therefore already known. Ex-
cept for the transformation, this process has been carried out successfully
for the case of a two-dimensional floating cylinder, where the free-surface
condition included second-order effects in the velocity U , see Chapter 3.

2.4 Matrix solver

At each time step taken in the time integration of the matrix equation,
a large matrix system has to be solved. There are several possibilities
for solving such large matrix equations. Two main possibilities are direct
solving or iterative solving. Especially in the last category, many algorithms
have been developed for different kinds of matrices or problems.
We have a general full matrix A of N × N . The matrix equation is

A~x = ~f .

The right-hand side ~f is not important for the choice of the solver.
This matrix system has to be solved for each time step, say M times. Be-
cause the matrix A is independent of time, using a direct solver will only
involve a decomposing process once. This decomposition generally takes
about N3 floating point operations. Solving the system using the decom-
posed matrix takes N2 operations. Thus, the total number of operations
will be approximately N3 + MN2 for a direct solver.
An iterative solver typically takes about kN2 operations for solving the
matrix system once, where k is the number of iterations necessary for con-
vergence. Thus, using an iterative solver will lead to a total number of
operations of kMN2. For the three-dimensional problem studied in chap-
ter 5, we have that typically N = 3500 and M = 400. Therefore, an
iterative solver is more efficient if it converges for

k <
N

M
+ 1 ≈ 10 .
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For a general full matrix system, this requirement can not be fulfilled. Thus
a direct solver is used, the general Gaussian elimination.



Chapter 3

Two-dimensional test

problem: cylinder of infinite

length

In chapter 1 hydrodynamic theory has been developed for a three-dimensio-
nal object floating in current and waves. In chapter 2 a numerical algo-
rithm has been proposed to solve the equations arising from the mathemati-
cal model. In this chapter, the model will be simplified to a two-dimensional
case in order to test this numerical algorithm. To be able to compare with
literature a floating cylinder of infinite length has been chosen. Results will
be presented for the hydrodynamic coefficients and the drift forces. They
will be compared with results found by Vugts [31] and Zhao [36]. Most of
this chapter has been published in Prins [22].

3.1 Introduction

In chapter 1 a mathematical model has been given which describes the
interaction between a floating object and current and waves. The theory
was set up for three-dimensional bodies, but without using the number of
dimensions explicitly. Therefore this theory also holds for two-dimensional
problems.
To test our algorithm presented in chapter 2, a two-dimensional problem
will be studied. This test case allows us to check accuracy and stability
of the numerical algorithm. To be able to compare with literature we will
study a floating cylinder of infinite length. The results will be compared
with Vugts [31] and Zhao [36].
Vugts studied two-dimensional cylinders of different cross-sections. He per-
formed measurements of the hydrodynamic coefficients for cylinders with-
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out current. Furthermore he used strip-theory to calculate these coeffi-
cients. Zhao paid attention to cylinders with circular cross-sections only.
He studied the effect of forward speed on the hydrodynamic coefficients and
on the drift force. He used a frequency-domain approach.
First we will summarize the simplified equations for the case of a cylinder
with circular cross-section. Then some numerical aspect will be discussed.
Finally the above mentioned comparison will be made.

3.2 Simplified model

We consider a horizontal circular cylinder with radius R (diameter d) and
of infinite length floating in water of infinite depth. The draught of the
cylinder equals the radius R. A uniform current with velocity U and regu-
lar incoming waves are travelling in the positive x-direction, see Figure 3.1.
The cylinder is free to oscillate in the x- and z-direction.

z

x

U

O

Figure 3.1: Geometry of the two-dimensional problem.

Because the problem is the same for each cross-section of the cylinder, the
number of dimensions can be reduced to two. The governing equation is
the Laplace equation, as stated in chapter 1. The linearized boundary
condition at the free surface becomes

∂2φ

∂t2
+ 2

∂φ

∂x

∂2φ

∂x∂t
+ 3

∂φ

∂x

∂2φ

∂x2

∂φ

∂x
+

(

∂φ

∂x

)2
∂2φ

∂x2
+

∂2φ

∂x2

∂φ

∂t

−
1

2



U2 −

(

∂φ

∂x

)2




(

∂2φ

∂x2
−

1

g

∂3φ

∂z∂t2

)

+g
∂φ

∂z
= 0 at z = 0 . (3.1)
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If we approximate the stationary potential by the undisturbed flow poten-
tial, this condition becomes

∂2φ

∂t2
+ 2U

∂2φ

∂x∂t
+ U2 ∂2φ

∂x2
+ g

∂φ

∂z
= 0 at z = 0 . (3.2)

This condition is widely known as the Neumann-Kelvin condition. The
approximation does not take into account that the fluid flow has to bend
around the body, but assumes the flow to go right through it. As may
have been expected, the results obtained by this approximation are clearly
inferior to the ones obtained using (3.1), see section 3.4.1. However, this
condition is useful for determining the exact form of our absorbing bound-
ary condition.

The linearized boundary condition on the hull remains

∂φ

∂n
=

∂~α

∂t
· ~n +

[(

~∇φ · ~∇
)

~α −
(

~α · ~∇
)

~∇φ
]

· ~n .

If we choose the artificial vertical boundary relatively far away from the
body, we may use the Neumann-Kelvin condition to approximate the be-
haviour of waves close to the boundary. Note that the boundary has to
be far away relative to the width of disturbance of the stationary flow, not
relative to the wavelength. If we assume the wave to be oscillatory in both
the x-direction and time, we may write the potential as

φ(~x, t) = Aekz cos(ωt ± kx) ,

with the plus sign for waves travelling in positive x-direction and the minus
sign for waves travelling in negative x-direction. Substituting this into (3.2)
gives the dispersion relation: the relation between the frequency in space
and the time frequency

−ω2 ∓ 2Uωk − U2k2 + gk = 0 .

In the absence of forward speed, one wave number ( i.e. space frequency)
exists. When a small forward speed is present, τ = Uω

g < 1
4 , the dispersion

relation has two real roots both for the plus and minus sign, i.e. on both
sides of the cylinder. This means that both in front and behind the cylinder
two waves will be generated with the same frequency, but with different
wave lengths. If τ = Uω

g > 1
4 , the roots of the dispersion relation on the

upstream side are complex and the waves are exponentially decreasing in
amplitude along the direction of propagation, so called evanescent waves.
Physically this means that the cylinder is sailing faster then the speed of
the waves, and that the waves which would have been generated in front of
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the hull, are overtaken. On the downstream side general oscillatory waves
are generated.

In this test study, only combinations of frequency and speed for which
τ < 1

4 are considered. Therefore two waves propagate on both sides of the
cylinder. This means that two waves have to be absorbed at the artificial
boundary condition. As stated in chapter 1, this gives rise to a product of
differential operators:

(

∂

∂t
+ c1

∂

∂n

)(

∂

∂t
+ c2

∂

∂n

)

φ = 0 ,

with ci the phase velocities of the waves. Substituting these velocities yields

∂2φ

∂t2
+ U(

1

τ
± 2)

∂2φ

∂n∂t
+ U2 ∂2φ

∂n2
= 0 , (3.3)

where the minus sign should be taken on the upstream side.

In the linearization of the boundary condition at the free surface, the steady
potential has been used. As stated in chapter 1, this potential is very
difficult to calculate and will therefore be approximated by the double-
body potential. This double-body potential can be calculated analytically,
and is given by

φ(~x) = Ux

(

1 +
R2

x2 + z2

)

.

The local fluid velocities can thus be calculated analytically, which elimi-
nates a source of errors from our algorithm.

3.3 Numerical aspects

In chapter 2 a numerical algorithm has been proposed to solve the equations
formulated in chapter 1. This algorithm will now be used to solve the
simplified equations given in the previous section.
The numerical method is based upon the discretized Laplace equation. The
discretization is performed by using a boundary-integral method, dividing
the boundary into panels and assuming quantities to be constant over these
panels. The discretized version of the Laplace equation is then given by

1

2
φi =

N
∑

j=1

φj

∫

ej

∂Gi,j

∂nj
dS −

N
∑

j=1

∂φj

∂nj

∫

ej

Gi,jdS , i = 1, .., N .
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Because our problem is two dimensional, the Green’s function is given by

G
(

~x, ~ξ
)

=
1

2π
ln
∣

∣

∣~x − ~ξ
∣

∣

∣ .

Note that this Green’s function indeed represents a source function, as was
assumed in chapter 2.
The integral of the Green’s function and its derivative over an element are
calculated using formulae given by Yeung [35], see also Figure 3.2:

∫

ej

G
(

~x, ~ξ
)

ds = cos(γ)
{

(ξ1 − ξ2) − (x − ξ2) ln
∣

∣

∣~x − ~ξ2

∣

∣

∣

+ (x − ξ1) ln
∣

∣

∣~x − ~ξ1

∣

∣

∣

}

+ sin(γ)
{

(η1 − η2) − (y − η2) ln
∣

∣

∣~x − ~ξ2

∣

∣

∣

+ (y − η1) ln
∣

∣

∣~x − ~ξ1

∣

∣

∣

}

− [(y − η2) cos(γ) − (x − ξ2) sin(γ)]

∫

ej

∂G

∂nξ

(

~x, ~ξ
)

ds ,

∫

ej

∂G

∂nξ

(

~x, ~ξ
)

ds = arctan

(

y − η1

x − ξ1

)

− arctan

(

y − η2

x − ξ2

)

.

�
�

�
�

�
�

�
��

s

s

~ξ1 = (ξ1, η1)

~ξ2 = (ξ2, η2)

γ

ej

Figure 3.2: Definitions of variables according to Yeung.

The time integration of the resulting matrix equation is carried out by
the method formulated in chapter 2. There an example was given of the
time-integration method using the Neumann-Kelvin boundary condition,
based on the elimination of the normal derivatives on all boundaries. Here
our boundary condition is much more complicated due to the fact that the
steady potential has now been approximated by the double-body poten-
tial, see equation (3.1). Therefore many more terms are involved in the
discretization. Fortunately, most of the terms do not cause any difficulties.
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They are composed of derivatives also included in the Neumann-Kelvin
condition. However, the second time derivative of the normal derivative of
the potential does cause difficulties. Due to this term it is not possible to
completely eliminate the normal derivative. The overall matrix equation
will still include normal derivatives, although on previous time levels. These
derivatives can be calculated easily using the discretized Laplace equation
and the potentials already calculated at these time levels. However, this
involves multiplication of large matrices and slows down our algorithm.
Unfortunately, this term can not be left out when calculating up to second
order in the velocity, see also Nakos [14].

The mesh used in the calculations to be presented, was equidistant. This
eases the numerical differentiation of the potentials. Both the first and
second-order derivatives were calculated using second-order differences. On
the cylinder explicit use was made of the circular shape, in order to reduce
errors in differentiation. These straightforward discretizations enable us to
study the errors arising due to the discretization of the boundary integral
and the time integration. Close to the intersection of the cylinder with
the free surface, however, special attention has to be paid to the differ-
entiation of the potential. Here the existence of stagnation points has to
be taken into account. At these stagnation points the potentials were cal-
culated by extrapolating the potential over the free surface. By involving
these stagnation points, the accuracy in the numerical differentiation can
be maintained, even close to the intersection.

3.3.1 Convergence and stability

In order to study the convergence and stability of our algorithm, calcu-
lations were done for several grid sizes and time steps. The results are
presented in Table 3.1 through Table 3.3.
Tables 3.1 and 3.2 show the added mass and damping coefficients for two
different speeds and frequencies, Fn = 0, Fn = .14, ω

′

= .36 and ω
′

= 1.00,
with the Froude number based on the radius, and

ω
′

= ω

√

R

g
.

The coefficients have been calculated for different grid sizes and time steps.
Clearly the convergence in the grid size is already very good at ∆x = L

30 =
3λ
30 for high frequencies. For lower frequencies though, finer grids have to be
used. Note that all time integrations in the above calculations are stable.
Even at ∆x = 3λ

90 the algorithm is stable, although the grid Froude number
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Table 3.1: Added mass and damping coefficients in heave for several grid sizes.

Fn = 0 Fn = .14

ω
′

= .36 ω
′

= 1.00 ω
′

= .36 ω
′

= 1.00

∆x ∆t
Azz

ρA

Bzz

ρωA

Azz

ρA

Bzz

ρωA

Azz

ρA

Bzz

ρωA

Azz

ρA

Bzz

ρωA

3λ

15

T

50
.375 .456 .261 .148 .569 .511 .278 .164

3λ

30

T

50
.448 .565 .263 .158 .666 .601 .279 .168

3λ

60

T

50
.494 .598 .263 .160 .723 .620 .278 .169

3λ

90

T

50
.506 .604 .740 .622

is 0.312. In chapter 2 it was shown, that the algorithm often used in liter-
ature already broke down at a grid Froude number of 0.184. Our algorithm
allows the grid size to be decreased without yielding the time integration
unstable. This illustrates the power of our algorithm.
From table 3.2 we see that the convergence of the time integration has been
established at 50 points per period up to an error of a few percent. Even
more accurate results may be obtained using 100 points per period.

Table 3.3 shows the convergence and stability of the calculations of the
added mass and damping coefficients in sway. Again it can be seen that
reducing the time step gives more accurate results. Finer grids will improve
the results as well, especially for lower frequencies.

3.3.2 Effectiveness of absorbing boundary condition

Several calculations have been done to verify the effectiveness of the ab-
sorbing boundary condition. It may be expected that the further away
the boundary is from the cylinder, the better the absorbing properties will
be. In the previous section the boundary has been chosen to be three
wavelengths (= 3λ) away. Because time integration was carried out over
4 periods of oscillation, no reflections could reach the cylinder during the
calculations.
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Table 3.2: Added mass and damping coefficients in heave for several time steps.

Fn = 0 Fn = .14

ω
′

= .36 ω
′

= 1.00 ω
′

= .36 ω
′

= 1.00

∆x ∆t
Azz

ρA

Bzz

ρωA

Azz

ρA

Bzz

ρωA

Azz

ρA

Bzz

ρωA

Azz

ρA

Bzz

ρωA

3λ

60

T

25
.734 .227 .170 .262 .942 .145 .181 .275

3λ

60

T

50
.494 .598 .263 .160 .723 .620 .278 .169

3λ

60

T

100
.479 .611 .250 .158 .711 .632 .265 .167

Table 3.4 and 3.5 show the effect of shortening the length of the compu-
tational free surface. In the calculations the grid size and the time step
remain the same. The boundary condition has been placed successively at
3λ, 2λ and λ distance from the cylinder. As may have been expected, the
results for the boundary at 2λ are as good as the ones from 3λ, because
waves still will not reach the cylinder during the calculation. However,
when the boundary is placed at λ, waves do come back. Because the re-
sults are affected only by a few percent, the absorbing boundary condition
seems to be very effective.

3.4 Results

In this section we will present the results for the hydrodynamic coefficients
and the drift forces. For zero speed, the added mass and damping will be
compared with Vugts [31], both with his measurements and his calcula-
tions. For small forward speed our results will be compared with Zhao [36].
Because both Vugts and Zhao assumed infinite depth, we will choose our
water depth to be as large as necessary.
The hydrodynamic coefficients and drift forces of the circular cylinder were
calculated using a mesh which had a length of 3 wave lengths. Although
the accuracy of the hydrodynamic coefficients has been shown to be good
for a mesh of 1 wavelength, we chose a larger mesh. This has been done
to avoid reflection in the drift-force calculations, which lasted 8 periods in
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Table 3.3: Added mass and damping coefficients in sway for several grid sizes and

time steps.

Fn = 0 Fn = .14

ω
′

= .36 ω
′

= 1.00 ω
′

= .36 ω
′

= 1.00

∆x ∆t
Axx

ρA

Bxx

ρωA

Axx

ρA

Bxx

ρωA

Axx

ρA

Bxx

ρωA

Axx

ρA

Bxx

ρωA

3λ

30

T

50
.361 .052 .159 .259 .432 .031 .181 .255

3λ

60

T

50
.396 .048 .169 .246 .496 .045 .186 .262

3λ

60

T

25
.370 −.134 .047 .276 .456 −.183 .061 .288

3λ

60

T

100
.400 .046 .157 .270 .501 .043 .175 .272

time. Using a much smaller mesh would give rise to multiple reflections,
which harm the accuracy of the results.
We used 60 panels on both sides of the cylinder, knowing that for this grid
size the results will have converged. To represent infinite depth, we chose
the water depth to equal 1 wavelength. Only 10 panels were taken on the
bottom. On the artificial boundaries, the grid size was twice the size at the
free surface. On the cylinder, 40 panels were used, in order to get accurate
results for the differentiations and the pressure integration.
The time integration was carried out over an interval of 8 periods for the
drift forces, and over 4 periods for the added mass and damping coeffi-
cients. On these intervals, 400 time steps were taken. The equation of
motion was integrated using the implicit method of Crank-Nicholson. This
method has the major advantage that it is unconditional stable. Although
more accurate methods exist, this advantage still prevails. The required
accuracy can be reached by increasing the number of time steps. This is no
problem, because our matrix system is independent of time. In non-linear
computations, however, the matrix system has to be updated every time
step, so the most accurate method should be used to be able to have large
time steps. This is why most authors studying non-linear wave propagation
use the Runga-Kutta-4 method.
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Table 3.4: Effect of the absorbing boundary condition on the added mass and damping

coefficients in heave.

Fn = 0 Fn = .14

ω
′

= .36 ω
′

= 1.00 ω
′

= .36 ω
′

= 1.00

∆x ∆t
Azz

ρA

Bzz

ρωA

Azz

ρA

Bzz

ρωA

Azz

ρA

Bzz

ρωA

Azz

ρA

Bzz

ρωA

3λ

60

T

50
.494 .598 .263 .160 .723 .620 .278 .169

2λ

40

T

50
.495 .599 .264 .160 .723 .621 .278 .169

1λ

20

T

50
.490 .603 .264 .163 .728 .617 .278 .170

As incoming potential we used

φinc =
gζa

ω0
cos(ωt − kx)ekz ,

with

ω = ω0 + kU ,

and

k =
ω2

0

g
.

This potential does not satisfy the free-surface condition. Because our prob-
lem is linear and we are only interested in the sum of all potentials, i.e the
total potential, this can be corrected in the diffracted wave. The separate
potentials no longer represent physical waves close to the body, but the
sum of the two potentials does.

The following results were all calculated using the double-body potential,
because the results using the undisturbed-flow potential are unsatisfactory,
see section 3.4.1.

All coefficients are shown as a function of the scaled frequency of encounter

ω
′

= ω

√

R

g
;
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Table 3.5: Effect of the absorbing boundary condition on the added mass and damping

coefficients in sway.

Fn = 0 Fn = .14

ω
′

= .36 ω
′

= 1.00 ω
′

= .36 ω
′

= 1.00

∆x ∆t
Axx

ρA

Bxx

ρωA

Axx

ρA

Bxx

ρωA

Axx

ρA

Bxx

ρωA

Axx

ρA

Bxx

ρωA

3λ

60

T

50
.396 .048 .169 .259 .496 .045 .186 .261

2λ

40

T

50
.397 .048 .169 .259 .496 .045 .186 .262

1λ

20

T

50
.396 .048 .171 .260 .497 .045 .186 .256

the drift forces are given as a function of the scaled frequency in the space-
fixed reference frame:

ω
′

0 = ω0

√

R

g
.

Figure 3.3 and 3.4 show the results for zero forward speed, together with
the calculations of Vugts, represented by little asterisks. The agreement is
very good. The added mass minimum is slightly too high, but decreasing
the time step lowers this minimum, as shown in Table 3.1.

The results for the added mass and damping coefficients in sway without
forward speed, are shown in Figure 3.5 and 3.6. Unfortunately the results
do not agree as good as the heave coefficients. From Table 3.3 it may be seen
that decreasing the grid size will improve the results. The large gradient
occurring in sway at the intersection of the cylinder and the free surface can
only be represented accurately using very small panels. A multi-size grid
could have been used, but this was not necessary in testing our numerical
algorithm. On the other hand, from calculations in chapter 6 it appears that
the forces are not purely sinusoidal yet, due to initial disturbances. Our
method of calculating the hydrodynamic coefficients by fitting the force to
the displacement, is therefore not entirely correct. This will be overcome
in chapter 6.

The comparison made above with the calculations of Vugts could also have
been made with his measurements. However, his measurements agree well
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* = calculations Vugts [31]
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Figure 3.3: Added mass in heave with-

out forward speed, compared with Vugts.
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Bzz

ρωd2

ω
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Figure 3.4: Added damping in heave

without forward speed, compared with

Vugts.

with his calculations, except for the low frequency range, where the mea-
surements suffer from the relatively finite depth. To eliminate this effect,
comparison has been made with his calculations.

The results including forward speed were calculated using six different
Froude numbers: Fn = −.035, 0, .035, .07, .105, .14, with the Froude num-
ber given by U√

gR
. The added mass and damping coefficients agree well with

the results found by Zhao [36], but for higher velocities the coefficients get
affected by our second-order free-surface condition (see Figures 3.7, 3.8, 3.9
and 3.10). Note that Zhao used a free-surface condition which is only cor-
rect up to first-order in the velocity. Therefore his results are expected to
be inferior for higher Froude numbers. We see that the added mass in heave
is an even function in U , because the curves for Fn=±.035 coincide. The
other coefficients seem to be asymmetric. Furthermore we notice that the
maxima in the sway coefficients become more extreme when the velocity
increases, which can also be concluded for the minimum in the added mass
in heave.

The coupling coefficients could not be checked, but they look plausible, see
Figures 3.11, 3.12, 3.13 and 3.14. Further note that only the coupled damp-
ing coefficients remain of one sign; for the mass coefficients there seems to
be a common zero for all velocities. We also notice that the coupled coeffi-
cients become rather large for increasing Fn, so they can not be neglected
in the equation of motion (1.26).
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* = calculations Vugts [31]
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Figure 3.5: Added mass in sway without

forward speed, compared with Vugts.
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Figure 3.6: Added damping in sway

without forward speed, compared with

Vugts.

0 0.5 1 1.5

0.4

0.8

1.2

Fn=0

Fn=−.035

Fn=.035

Azz

ρd2

ω
′

Figure 3.7: Added mass in heave for six

velocities.
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Figure 3.8: Added damping in heave for

six velocities.

The results for the horizontal drift force are given in Figure 3.15. For low
velocities they agree well with the results Zhao [36] found. For higher veloc-
ities we clearly see that we included non-linear effects in U : the increase in
the drift forces due to an increase in the velocity lessens. The extreme value
of the drift force is shifted to the left, for only the frequency of encounter
matters for this value. To obtain these drift forces it was very important to
take second-order terms in U into account, especially for larger U . If one
would not consider the large influence the velocity has on the added mass
and damping coefficients, the drift forces would become very extreme and
unrealistic.
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Figure 3.9: Added mass in sway for six

velocities; legend as in Figures 3.7 and

3.8.
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Figure 3.10: Added damping in sway for

six velocities; legend as in Figures 3.7 and

3.8.
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Figure 3.11: Coupled added mass from

heave into sway for six velocities; legend

as in Figures 3.7 and 3.8.
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Figure 3.12: Coupled added damping

from heave into sway for six velocities;

legend as in Figures 3.7 and 3.8.

In Figure 3.16 the results are shown for the vertical second-order force.
Here we see that the influence of the forward speed merely results in a shift
of the drift force, due to the frequency of encounter.

Unfortunately no measurements are available to verify our calculations.

3.4.1 Comparison of results found by using the double-body

potential and the undisturbed-flow potential

Some additional calculations have been done in order to show what error
would have been made if we would have used the undisturbed-flow potential
as an approximation of the steady potential. The additional calculations
were done with the same accuracy as the calculations using the double-
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Figure 3.13: Coupled added mass from

sway into heave for six velocities; legend

as in Figures 3.7 and 3.8.
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Figure 3.14: Coupled added damping

from sway into heave for six velocities;

legend as in Figures 3.7 and 3.8.
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Figure 3.15: Horizontal drift force for

six velocities; legend as in Figures 3.7 and

3.8.
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Figure 3.16: Vertical drift force for six

velocities; legend as in Figures 3.7 and

3.8.

body potential. We used the maximal speed, i.e. Fn = .14. The following
figures show the results for three different cases: using the double-body
potential, using the undisturbed-flow potential, and using the double-body
potential on the hull and the undisturbed-flow potential on the free-surface.

As may be seen from Figure 3.18, the added damping in heave is hardly
affected. However, in Figure 3.17 we see that the added mass is highly
underestimated when using the undisturbed-flow potential. Using the mix-
ture of the two potentials gives good results, though. As could have been
expected, the coupling coefficients suffer severely from the approximation
of the steady potential, see Figure 3.23 and Figure 3.24.
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Figure 3.17: Added mass in heave us-

ing φdb and Ux as approximations for the

steady potential.
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Figure 3.18: Added damping in heave

using φdb and Ux as approximations for

the steady potential.
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Figure 3.19: Added mass in sway us-

ing φdb and Ux as approximations for the

steady potential; legend as in Figure 3.17.
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Figure 3.20: Added damping in sway us-

ing φdb and Ux as approximations for the

steady potential; legend as in Figure 3.17.

The same discrepancies occurring in heave seem to be present in the sway
coefficients, see Figures 3.19, 3.20, 3.21 and 3.21. Again the damping is not
affected, and the mass is underestimated. The coupling coefficients change
a lot.
Figure 3.25 and 3.26 show the effect on the drift force. The differences
between the drift forces are enormous. The horizontal drift force is under-
estimated by almost a factor 2. Note that the drift force for positive speed
is smaller then the drift force for zero speed. This is very unrealistic. The
vertical drift force is less worse, though for higher frequencies the force is
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Figure 3.21: Coupled added mass from

sway into heave using φdb and Ux as ap-

proximations for the steady potential; leg-

end as in Figure 3.17.
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Figure 3.22: Coupled added damping

from sway into heave using φdb and Ux
as approximations for the steady poten-

tial; legend as in Figure 3.17.
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Figure 3.23: Coupled added mass from

heave into sway using φdb and Ux as ap-

proximations for the steady potential; leg-

end as in Figure 3.17.
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Figure 3.24: Coupled added damping

from heave into sway using φdb and Ux
as approximations for the steady poten-

tial; legend as in Figure 3.17.

under estimated, and for lower frequencies over estimated. In these calcu-
lations it appeared that the relative wave height at the water-line was of
major importance. Due to the stagnation point, this relative wave height
can only be estimated correctly by using the double-body potential both
on the hull and on the free surface.

Overall we can conclude that the undisturbed-flow approximation gives very
unsatisfactory results. Even a mixture of the double-body potential and
the undisturbed-flow potential does not improve the results enough. This
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Figure 3.25: Horizontal drift force for

Fn = .14 using Ux; legend as in Figure

3.17.
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Figure 3.26: Vertical drift force for Fn =
.14 using Ux; legend as in Figure 3.17.

mixture of potentials has been used in literature to include the double-body
potential in methods which could not cope with this potential in the free
surface, see Huijsmans [8]. Based on our results, we conclude that these
methods should be used with much caution.

3.5 Conclusions

In this chapter we studied a two-dimensional problem in order to test our
algorithm proposed in chapter 2. Form the test results it may be concluded
that the algorithm is stable for all realistic time steps and grid sizes. Fur-
thermore convergence has been shown for the hydrodynamic coefficients.
Thus the algorithm is very powerful, and can now be applied to three-
dimensional problems.
The results found for the hydrodynamic coefficients are in good agreement
with Vugts [31] and Zhao [36]. In swaying, some discrepancies exist with
the results of Vugts. However, these differences will be overcome in chap-
ter 6. The drift forces agree well with the results found by Zhao, except for
larger velocities, for which our equations are more accurate. The smooth
behaviour of the drift forces as function of the velocity suggests that they
are accurate.
It has been shown that it is vital for the reliability of the results to use
the double-body potential as an approximation for the steady potential.
The undisturbed flow can not be used, and will give clearly inferior results.
Even a mixture of the double-body and the undisturbed-flow potential still
produces inaccurate results.



Chapter 4

Three-dimensional test

problem: floating sphere

In this chapter we will consider a three-dimensional test problem. A math-
ematical model will be summarized for the case of a freely floating sphere.
Numerical aspects, specific to three-dimensional problems, will be treated.
Results will be given for the hydrodynamic coefficients and the drift forces.
A comparison will be made with results found by Pinkster [20] and Nossen
[17]. Major parts of this chapter have been published in Prins [23].

4.1 Introduction

In the previous chapter we studied a simplified geometry in order to test
our numerical algorithm as given in chapter 2. The algorithm was shown
to be stable and convergent, and the results were plausible. Therefore we
will now apply our algorithm to a three-dimensional case.
To be able to compare our results with literature, and to eliminate errors
arising from numerical differentiation, we will study a floating sphere. Such
a sphere has previously been subject of investigation for Pinkster [20] and
Nossen [17]. Pinkster calculated the hydrodynamic coefficients and the drift
forces in the case of zero forward speed. Nossen included forward speed in
his calculations. However, his sphere was not freely floating. Therefore
only hydrodynamic coefficients can be compared. Both authors used a
frequency-domain approach to solve the differential equations.
First we will summarize the mathematical model and try to improve the
absorbing boundary condition. Then some numerical aspects specific to
three-dimensional problems, will be discussed. Finally, results will be given
for the hydrodynamic coefficients and the drift forces for several forward
speeds and headings of the waves.
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Figure 4.1: Aerial view of the geometry.

4.2 Mathematical model

We consider a sphere with radius R floating in water of infinite depth. The
draught of the sphere equals the radius. A uniform current with velocity U
is directed in the positive x-direction; regular incoming waves are travelling
in the water-surface in a direction which makes an angle β with the positive
x-direction, see Figure 4.1.

The coordinate system is chosen in such a way that the undisturbed free
surface coincides with the plane z = 0 and the centre of the sphere is at
the origin, with z pointing upwards. The centre of gravity of the sphere is
assumed to be the centre of the sphere itself, and is therefore located at the
origin. The sphere is free to oscillate in the x-, y- and z-direction. Because
all the normals on the sphere point to the origin, no rotations will occur
around the origin.

The governing differential equation is the Laplace equation, as stated in
chapter 1. The linearized free-surface condition is given by

∂2φ

∂t2
+ 2

∂φ

∂x

∂2φ

∂x∂t
+ 2

∂φ

∂y

∂2φ

∂y∂t
+

∂2φ

∂x2

∂φ

∂t
+

∂2φ

∂y2

∂φ

∂t
+ g

∂φ

∂z
= 0 .(4.1)

Note that terms of O
(

U2
)

have been neglected. This has been done,
because the maximal cruising speed of the tanker in chapter 5 is about
Fn = .08, which is a rather moderate speed. The maximal speed of the
sphere has therefore been chosen to be Fn = .08 as well. Thus no second
order terms in the velocity are needed in the calculations. Furthermore,
including these additional terms would give rise to some problems, as men-
tioned in section 3.3, which would increase the computer time considerably.
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The body boundary condition is still given by

∂φ

∂n
=

∂~α

∂t
· ~n − ~α ·

(

~n · ~∇
)

~∇φ . (4.2)

4.2.1 Absorbing boundary condition

The absorbing boundary condition proposed in chapter 1, has been shown
to be effective in the two-dimensional test case. Therefore we would like
to use this same condition. However, some problems arise. The direction
of wave propagation is no longer normal to the boundary. Still we would
like to have a normal derivative in our boundary condition, because this
derivative is used in the numerical algorithm. Therefore the asymptotic
behaviour of the waves will be studied and the angle of incidence on the
boundary will be determined. Furthermore this asymptotic analysis might
give clues to improve the absorbing condition. Below, a short outline of
the asymptotic analysis will be given. A more thorough analysis is given
in appendix A.

In order to estimate the asymptotic behaviour of the waves, we analyse
asymptotically the Green’s function satisfying the free-surface condition
for τ = Uω

g < 1
4 :

G
(

~x, ~ξ
)

=
2g

π

π
2
∫

0

dθ

∫

L1

dkF (θ, k) +
2g

π

π
∫

π
2

dθ

∫

L2

dkF (θ, k) ,

with

F (θ, k) =
kek(z+ζ+i(x−ξ) cos θ) cos (k(y − η) sin θ)

gk − (ω + kU cos θ)2
,

and the contours L1 and L2 given in Figure 4.2, as given by Wehausen [33].

"!
-

"! L1

.k2k1.

 #
-

"! L2

.
k4

k3.

Figure 4.2: Integration paths for the Green’s function.

The integration with respect to k can be carried out analytically, resulting
in the contributions of the polars. Because the maximal speed involved
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in our problem is rather low, only two waves have to be absorbed, one
downstream and one upstream. The other two waves travel at very low
speeds and will therefore not spoil the results. Thus only contributions due
to the polars k1 and k3 are of interest. Now we use cylindrical coordinates
in a plane parallel to the free surface:

x − ξ = R cos γ
y − η = R sin γ .

For large values of R, i.e. for points on the artificial boundary far away
from the sphere, the remaining integral to θ can be approximated by using
the method of stationary phase. For stationary phase we have to require

k(θ) sin(γ − θ) +
∂k(θ)

∂θ
cos(γ − θ) = 0 ,

with

k(θ) =
2Uω cos θ + g −

√

g2 + 4Uω cos θ

U2 cos2 θ
.

Solving this equation results in the value of the local wave-number k(θ(γ)).
For small values of U we find:

k(θ(γ)) =
ω2

g
(1 + 2τ cos θ(γ)) + O

(

τ2
)

.

Now the asymptotic behaviour of the potential is given by

φ(R, t) = Aeiωt eik(θ(γ))R

√

k(θ(γ))R
+ O

(

1

k(θ(γ))R

)

. (4.3)

Thus we arrive at the absorbing boundary condition

∂φ

∂t
+

ω

k(θ(γ))

∂φ

∂r
= 0 . (4.4)

To obtain a condition involving the normal derivative of φ, we split up the
radial direction into the normal direction and tangential directions. Then
the radial derivative can be expressed in terms of the normal derivative
and tangential derivatives. The latter are neglected in the calculations;
this causes errors which will propagate primarily along the boundary and
not into the fluid domain.

It can be seen from equation (4.4) that only the oscillatory behaviour of
the potential has been taken into account. The radial derivative of the
nominator could also be taken into consideration. This has been done by
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Kriegsmann [11], who used absorbing boundary conditions in the calcula-
tion of electro-magnetic fields. The condition would then read

∂φ

∂t
+

ω

k(θ(γ))

∂φ

∂r
+

1

2r
φ = 0 .

Unfortunately, this does not improve the performance of the condition.
This is due to the fact that the correction thus included is of higher order
in 1

r than the error already made in the asymptotic analysis. Extending the
analysis shows that the first correction to the asymptotic behaviour given
above is

A2

k(θ(γ))r
.

This term has no oscillatory behaviour and is therefore reflected by the
boundary condition, causing an error of O(1

r ). The correction introduced
by Kriegsmann is of O( 1

r3/2
), which is already negligibly small in our asymp-

totic analysis. Kriegsmann was able to use this correction of his absorbing
boundary condition, because his Green’s function has a different asymp-
totic behaviour at higher orders. Thus in our case no improvement can be
found along this line.

The absorbing boundary condition has to be fulfilled in every point of the
boundary. However, due to discretization only a finite number of points will
be taken into account. Thus errors may arise in between of those points.
This error is studied in appendix B. There it is concluded that the error is
of the order of the perimeter of an element. Thus the elements should not
be too large.

4.3 Numerical aspects

In this section some numerical aspects of the problem will be discussed. The
mathematical model given in chapter 1 and summarized at the beginning
of this chapter, will be solved using a boundary-integral method. The
boundary integral is discretized assuming that the potential and its normal
derivative are constant over each panel. The discretized version of the
Laplace equation then reads

1

2
φi =

N
∑

j=1

φj

∫

ej

∂Gi,j

∂nj
dS −

N
∑

j=1

∂φj

∂nj

∫

ej

Gi,jdS , i = 1, .., N .

The Green’s function is given by

G
(

~x, ~ξ
)

= −
1

4π
∣

∣

∣~x − ~ξ
∣

∣

∣

.
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Figure 4.4: Definition of variables ac-

cording to Fang.

The integrals of the Green’s function and its derivative over a panel are
calculated using formulae from Fang [5], corrected for some erroneous signs.
We assume that the corners of a panel are numbered in accordance with
the direction of the normal on the panel. If the panel is a quadrangle,
it is subdivided into two triangles. This allows us to use non-flat panels,
whereas calculating the integral over the Green’s function over the whole
quadrangle at once, restricts the mesh to flat panels.
The integrals are calculated using the projection of the source point on the
panel, see Figure 4.3. Then the triangle is split up into three triangles:

−4π

∫

ej

G
(

~x, ~ξ
)

ds = ±

∫

QAB

1

r
ds ±

∫

QBC

1

r
ds ±

∫

QCA

1

r
ds − hθ0 ,

where the plus sign should be taken if the order of the corners is in accor-
dance with the direction of the normal. The integral over a sub-triangle is
then given by

∫

QAB

1

r
ds =

d

2
log

(

1 +
2 |a + b|

1 + ab − |a + b|

)

+

+h arctan

(

hd
|a + b|

d2 − abh2

)

, (4.5)

with a = cos(θa) and b = cos(θb), see Figure 4.4. The same procedure gives
for the normal derivative

−4π

∫

ej

∂G

∂nξ

(

~x, ~ξ
)

ds = ±

∫

QAB

∂

∂nξ

1

r
ds ±

∫

QBC

∂

∂nξ

1

r
ds +
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±

∫

QCA

∂

∂nξ

1

r
ds + θ0 ,

and
∫

QAB

∂

∂nξ

1

r
ds = −2sgn(~h · ~n)

(

arctan

(

ah

d

)

+ arctan

(

bh

d

))

. (4.6)

The overall angle θ0 is given by

θ0 =











2π when Q inside ABC
π when Q on side of ABC
0 when Q outside ABC .

The time integration of the matrix system is carried out by using the al-
gorithm proposed in chapter 2. As in chapter 3, we use the double-body
potential as an approximation for the steady potential, not the undisturbed-
flow potential as used in the example of chapter 2.
In the study of the two-dimensional test case it appeared that a very fine
grid was needed close to the object to get accurate results, especially is
sway motion. To make sure that the number of elements in the mesh
stays within reasonable bound, the mesh used in the calculations is non-
equidistant. The discretization of the derivatives is therefore slightly more
complicated then in the two-dimensional test case. To calculate the deriva-
tives at a panel, the five closest neighbours and the panel itself were used.
The first-order derivatives are still estimates with second-order differences,
but the second-order derivatives are estimated using a first-order difference
scheme. In chapter 3 the second-order derivatives were discretized using
a second-order difference. Because of the non-equidistant grid, this is no
longer possible using only six points. If a non-equidistant grid was used in
the two-dimensional case, more then three points should have been used to
maintain the order of accuracy. The differentiation schemes are of course
different for each element in the mesh, because the distances to the neigh-
bouring elements differ for each element. On the sphere explicit use has
been made of the spherical shape. Again, as in chapter 3, the existence of
stagnation points has to be taken into account. Therefore the derivatives
at elements close to the water-line, are calculated using the extrapolated
value at the water-line. If a derivative at the free surface is needed, the
value at the water-line is extrapolated from the hull, and vice versa.

4.4 Results

In this section we will present the results for the hydrodynamic coeffi-
cients and the drift forces. They will be compared with those found by
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Pinkster [20] and Nossen [17]. Pinkster calculated the hydrodynamic co-
efficients and the drift forces in the case of zero forward speed 1. Nossen
has given the coupled hydrodynamic coefficients for small velocities. Both
authors used the frequency domain to get to their results.

Figure 4.5: Panel-division of the sphere and the first rings on the free surface.

We used a cylindrical computational domain which had a radius of two
wavelengths and a depth of half this radius. The free surface was divided
into 30 rings according to ri+1 = ri +

λ
240Bi−1 with ri the radius of the i-th

ring and B ≈ 1.155. Each ring was subdivided into as many elements as
there were line elements on the sphere, i.e. 32, see also Figure 4.5. The
artificial boundary was divided into 6 equally-sized rings, again subdivided
into 32 elements. At the bottom only 4 rings were used and the inner
ring was divided into triangular elements. Tests showed that indeed no
noticeable reflections occurred from the artificial boundary using this mesh
and our absorbing boundary condition, independent of the frequency used.
Less reflections occurred than in the two-dimensional test case, due to the
dispersive nature of the mesh on the free-surface: the larger the element,
the more energy is lost during the calculations. However, the elements can
not be chosen too large, because otherwise the accuracy of the calculations
is lost. In the extreme case of very large elements reflection may even oc-
cur from such an element, because numerically it is seen as a fixed wall.
Because the largest elements are close to the artificial boundary, this does
not harm the solution of our problem close to or on the body.
As one can see from Figure 4.5, the mesh on the sphere has been refined
locally near the water-line. This has been done in order to get a good repre-
sentation of the velocity field near the water-line and the stagnation points.

1The results of Pinkster given in his thesis contain a slight error. Fortunately he was

so kind to recalculate his results.
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The time integration was carried out over a time interval of 8 periods ac-
cording to the frequency of encounter. On this interval 400 time steps were
taken. The equations of motion were integrated using the implicit method
of Crank-Nicholson.
As incoming potential we used

φinc =
gζa

ω0
cos(ωt − kx)ekz ,

with

ω = ω0 + kU ,

and

k =
ω2

0

g
.

As in the two-dimensional problem, this potential does not satisfy the free-
surface condition. Because our problem is linear and we are only interested
in the sum of all potentials, i.e the total potential, this can be corrected in
the diffracted wave. The separate potentials no longer represent physical
waves close to the body, but the sum of the two potentials does.
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Figure 4.6: Added mass in heave for four

velocities.
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Figure 4.7: Added mass in surge for four

velocities.

Figures 4.6 through 4.11 show the added mass and damping coefficients for
heave, surge and sway for four different velocities: Fn = 0, Fn = −.04, Fn =
.04 and Fn = .08. Note that these results are represented as a function of
ω

′

= ω
√

R/g, the scaled frequency of encounter. The coefficients are scaled
with the mean submerged volume of the sphere, △. The coefficients for zero
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Figure 4.10: Added mass in sway for

four velocities.
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Figure 4.11: Added damping in sway for

four velocities.

forward speed agree well with results found by Pinkster [20], represented by
little circles. It can also be seen that the coefficients are fairly independent
of the speed.

Figures 4.12 through 4.15 show the coupling coefficients in heave and surge.
The results of Nossen [17] are represented by circles, and they agree very
well with our results. Like Nossen, we find that the coupling coefficients
are linear in the velocity, and that the symmetry-relation holds. Because
of this symmetry the coefficients for Fn = −.04 have not been plotted for
the surge motion, but the computed results were indeed symmetrical. No
coupling occurs in sway, because of the symmetry in the y-plane.

The drift forces for zero forward speed are given in Figures 4.16 and 4.17.
The results of Pinkster are represented with little circles and asterisks.
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from surge into heave for two velocities.

Pinkster split up the drift force into four contributions: one due to the
relative wave height, one due to the gradient square, one due to the dis-
placement, and one due to the acceleration:

F I
2 =

1

2
ρg

∫

wl

(

ζ(1) − α
(1)
3

)2
~n(0)dl ,

F II
2 = −

1

2
ρ

∫

H0

~∇φ(1) · ~∇φ(1)~n(0)dS ,

F III
2 = −ρ

∫

H0

(

~α(1) · ~∇
)

(

∂φ(1)

∂t
+ ~∇φ(1) · ~∇φ

)

~n(0)dS ,
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Figure 4.16: Horizontal drift force for

U = 0, compared with Pinkster.
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Figure 4.17: Vertical drift force for U =
0, compared with Pinkster.

F IV
2 = ~Ω(1) × M ~̈X

(1)

.

The last contribution is zero, because no rotations occur in this test case.
The same is true for the vector contribution to the drift force found to be
missing in Pinkster’s formulation, see chapter 1. In the figures the dashed
lines represent the results of our calculations for the contributions defined
by Pinkster; the solid line is the total drift force. The force due to the
relative wave height appears to be the dominant contribution. However,
the gradient-square contribution is also very large and opposite of sign,
thus yielding the total drift force less than half the contribution due to the
relative wave height. The agreement between the calculations of Pinkster,
represented by circles and asterisks, and our results is very good. Even the
separate contributions agree very well.
Figure 4.17 shows the vertical drift force. Again the agreement with Pink-
ster is very good, except for the peak values in the separate contributions.
This is due to resonance in the physical problem, which can be simulated
more accurately by decreasing the time step of our time integration. Note
that the first term in the drift force, the relative wave height, does not
contribute to the vertical drift force. This is due to the fact that all normals
at the water-line elements are in a horizontal plane, i.e. the hull intersects
the free surface perpendicularly.

In Figures 4.18 and 4.19 the horizontal and vertical drift forces have been
plotted for non-negative speeds. Drift forces with forward speed have not
been shown in literature yet, so they can not be compared; however, they
look rather convincing. The drift force for negative velocity has not been
computed, because this is the same as for positive velocity with heading
angle β = 180◦, shown in Figure 4.20. The fact that the extreme value of
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the drift force is shifted to the left for positive speeds, is due to the fact
that on the horizontal axis the frequency in the space-fixed reference frame
has been used.
In Figure 4.20 and Figure 4.21 we show the drift forces for different headings
at Fn = .04. Again, these results can not be checked, but they look just
the way one would expect. Note that the drift force in the x-direction is
not zero in side waves due to the asymmetry caused by the current.

4.5 Conclusions

In this chapter we calculated the hydrodynamic coefficients and the drift
forces for a three-dimensional test case: a floating sphere. The results
for zero forward speed agreed very well with results found by Pinkster [20],
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who used a frequency-domain approach. When forward speed was included,
the results could not be checked anymore with literature. Only the cou-
pled added mass and damping coefficients have been published before by
Nossen [17]. The agreement in these small coefficients was very good, and
this suggests that our numerical calculations are very accurate. The results
for the drift forces for several speeds and headings look very convincing.



Chapter 5

Results for a 200kDWT

tanker

In this chapter the equations, given in chapter 1, are solved with a 200kDWT
tanker as the floating object in shallow water. The algorithm outlined in
chapter 2 will be used. The error arising from numerical differentiation will
be studied. The double-body potential is calculated numerically. Results will
be given for the hydrodynamic coefficients and drift forces and moments for
several headings and speeds. Parts of this chapter have been published in
Prins [24].

5.1 Introduction

After studying two simplified floating objects in the previous chapters, we
now arrive at one of the goals of our study: the calculation of drift forces
and moments on a super tanker for different speeds and headings. The stud-
ies on the fictional objects showed that the proposed algorithm to solve the
equations of chapter 1, was stable, convergent and accurate. This same
algorithm will therefore be used calculating the interesting quantities for a
commercial tanker.
Some extra difficulties arise in these calculations. Least of all is the fact
that rotational motion and moments have to be included in the model. As
they were already included in the model-equations, this may seem not so
much of a problem. However, viscous effects become very important, espe-
cially in roll motion. Because these effects are not included in the model,
extra attention has to be paid to this motion, in order to achieve a fair
agreement with measurements.
Another problem arising is the numerical differentiation of the potentials
on the hull. In the previous test cases, the derivatives were calculated by
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using the known shape of the object, circular or spherical. Because no evi-
dent elementary shape resembles the hull of a tanker, a more sophisticated
approach has to be used.
The third problem arising is the fact that the double-body potential is no
longer known analytically. Thus, this potential has to be calculated nu-
merically, and the derivatives have to approximated in the same way as the
derivatives of the time-dependent potential.

First we will summarize the main equations. Then the numerical differen-
tiation will be considered, followed by the calculation of the double-body
potential. Results will be given for the hydrodynamic coefficients, and,
after discussing the improvement of the hydrodynamic coefficients for roll
motion, for the drift forces and moments for several speeds and headings.

5.2 Mathematical model

We consider a floating super tanker, whose particulars are given in Ta-
ble 5.1.

Table 5.1: Particulars of the 200 kDWT tanker.

Designation Unit

Length between m 310.00
perpendiculars (L)
Breadth (B) m 47.17
Draught (D) m 18.90
Displacement (∆) m3 234, 826.0
Centre of buoyancy m 9.18
below water-line
Centre of gravity below m 5.58
water-line
Moment of inertia roll kg m2 5.77 ∗ 107

Moment of inertia pitch kg m2 1.43 ∗ 109

Moment of inertia yaw kg m2 1.49 ∗ 109

The equations describing the flow around this tanker, are given in chapter 1.
The governing equation is the Laplace equation:

∆φ = 0 .
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At the free surface, the linearized boundary condition reads

∂2φ

∂t2
+ 2

∂φ

∂x

∂2φ

∂x∂t
+ 2

∂φ

∂y

∂2φ

∂y∂t
+

∂2φ

∂x2

∂φ

∂t
+

∂2φ

∂y2

∂φ

∂t
+

+g
∂φ

∂z
= 0 at z = 0 .

Again, we neglect the quadratic terms in U , because the velocity under
consideration is not very high, and because these additional terms cause
some numerical difficulty, see chapter 3.
On the hull we have, after linearization,

∂φ

∂n
=

∂~α

∂t
· ~n +

[(

~∇φ · ~∇
)

~α −
(

~α · ~∇
)

~∇φ
]

· ~n .

Because the double-body potential is not known analytically, the derivatives
in the body-boundary condition have to be calculated numerically. Espe-
cially the second-order derivatives may cause numerical problems. There-
fore, Nakos [13] rewrote this condition by using partial integration. This has
the disadvantage of having to evaluate additional integrals over the Green’s
function. Because these integrals already are a major time-absorbing factor
in the calculations, more integrals will slow down the programme consider-
ably. Thus it is not evident what method should be preferred. We chose to
use numerical differentiation, because second derivatives are also needed at
the free surface, and because the super tanker has no sharp edges, which
allows the differentiation to be more accurate.
At the artificial boundary we use the same absorbing boundary condition
as was done in the three-dimensional test case in chapter 4:

∂φ

∂t
+

ω

k(θ(γ))

∂φ

∂r
= 0 .

This condition only absorbs one outgoing wave, because the second out-
going wave present travels much slower and has not to absorbed by the
boundary. The local wave-number k(θ(γ)) follows from a stationary phase
analysis, as shown in chapter 4 and appendix A.

5.3 Numerical aspects

In this section some numerical aspect of the problem will be discussed.
The mathematical model given in chapter 1 and summarized at the be-
ginning of this chapter, will be solved using a boundary-integral method.
The boundary integral is discretized assuming that the potential and its
normal derivative are constant over each panel. The Green’s function and
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the integrals over a panel are the same as in the three-dimensional test case
of a floating sphere, see chapter 4.

At the free surface the derivatives of the potential are calculated the same
way as was done in chapter 4. The first-order derivatives are estimates
using second-order differences; the second-order derivatives are estimated
using a first-order difference scheme. These schemes are of course differ-
ent for each element in the mesh. On the hull the differentiation is more
complicated then it was on the sphere. On the sphere explicit use was
made of the spherical shape. This can not be done anymore on the hull.
Therefore special attention will be paid to the numerical differentiation of
the potentials on the hull.

5.3.1 Numerical differentiation on the hull

Because we have to know derivatives of the potential and of the double-
body potential on the hull, numerical differentiation has to be applied to
these functions. However, no evident scheme is present to calculate these
derivatives numerically. When the shape of the hull resembles a simple
mathematical geometry, a transformation of coordinates can be used and
differential schemes can be applied on the transformed coordinates. This
has been done successfully on both the cylinder and the sphere in the test
cases of chapters 3 and 4.

Figure 5.1: Panel distribution on the 200kDWT tanker and on part of the free surface.

Figure 5.1 shows a panel distribution on the tanker as used in the calcula-
tions. As can be seen from this figure, large parts of the hull are flat. On
these parts numerical differentiation can be carried out very easily by using
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Figure 5.2: Error in the x-derivative relative to the maximal function value.
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the same method as was done on the free surface. The tangential deriva-
tives from the numerical differentiation and the normal derivative known
from the hull boundary condition, combine to the gradient vector of the
potential on the flat parts of the hull.
On the parts of the hull that are not obviously flat, several algorithms are
used to calculate the derivatives. If the surroundings of an element are
nearly flat, the same algorithm is used as for elements with flat surround-
ings. The fact that some neighbours do not lie in the plane of the element,
is corrected by using the normal derivative at the element under considera-
tion and the normal distance from a neighbour to the plane of the element.
This can be done fairly easily, because the normal derivative on the hull is
always known.

If the local curvature of the hull is to large, the surroundings of the ele-
ment is approximated by a cylinder, sphere or ellipse. On these elementary
shapes, the derivatives can be calculated using finite differences. Then the
real tangential derivatives are calculated using the transformation of coor-
dinates appropriate to the approximation of the local hull shape. Again,
deviations from the assumed shape are corrected using the normal deriva-
tive. The gradient vector is then again composed of the known normal
derivative and the calculated tangential derivatives.

To test the accuracy of the method of numerical differentiation outlined
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Figure 5.3: Error in the z-derivative relative to the maximal function value.
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above, we differentiated some test functions and compared the results with
the analytical derivatives. Because we want to differentiate the wave-like
potentials involved in our problem, the test function was chosen to be

f (~x) = sin(kx)ekz .

Figures 5.2 and 5.3 show the error made in the numerical differentiation
compared to the analytical results for ω

′

= 4.70 and k = ω2

g . The error is
shown as a percentage of the amplitude of the function. If the relative error
would have been plotted, errors in small values of the derivative would be
represented highly exaggerated. As could have been expected, the error is
small at the flat parts of the hull, and larger at the curved parts. Note
however, that the error is always smaller than 5%. From the z-derivative
we see that close to the water-line the one-sided difference schemes cause
some errors, although still smaller than 5%. The chosen frequency is the
upper bound of the frequencies under consideration in section 5.4. For lower
frequencies the grid size is relatively smaller compared to the wave length.
Thus we may conclude that the numerical differentiation performed using
the above method, is accurate for the functions of interest.

5.3.2 Double-body potential

In the decomposition of the total potential, we used the steady potential.
Assuming that the influence of the stationary waves generated by the hull
was negligible, leads to the approximation of the steady potential by the
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Figure 5.4: Pressure on the sphere due to the analytical double-body potential.

double-body potential. In the previous test-cases this double-body poten-
tial was known analytically and the necessary derivatives were calculated
analytically. In the case of a tanker however, this potential has to be cal-
culated numerically.
The calculation of the double-body potential was not a goal of investigation
itself. Therefore we used as much tools as we already had developed for the
calculation of the wave-drift potential. For the time-dependent potential
we substituted the boundary conditions for ∂φ

∂n into the matrix equation
to obtain one single matrix equation for the potentials φ themselves. This
same procedure can be used when calculating the double-body potential.
On both the free surface and the hull, the normal derivative of the potential
should equal zero, see chapter 1. On the artificial boundary we assume the
flow to be undisturbed,

φ = Ux .

These boundary conditions are used to eliminate one of the unknowns per
boundary. Then the matrix equation is solved, resulting in the double-body
potential on both the hull and the free surface. Numerical differentiation
leads to the local velocities searched for.

To be able to distinguish between errors arising from the use of the ma-
trix equation, and errors arising from numerical differentiation on the hull,
we calculated the potential on a sphere. This potential is known analyt-
ically as given in chapter 4. On the sphere numerically differentiating is
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Figure 5.5: Pressure on the sphere due to the numerical double-body potential.

much easier, so a comparison between the analytical and numerical results
enables us to estimate the errors arising from the use of the matrix equation.

Figure 5.4 shows the pressure on the sphere due to the analytical double-
body potential. The pressure is supposed to be zero at infinity:

p =
1

2
∇φ · ∇φ −

1

2
U2 .

In the figure, red symbolises the lowest pressure (−1
2U2), and purple the

highest pressure (+5
8U2). Note that the undisturbed flow would yield zero

pressure all over the hull. It can be seen clearly that a stagnation point
exists at the upstream side of the sphere. The highest velocities occur at
the side of the sphere.
Figure 5.5 shows the same pressure as before, now for the numerical double-
body potential. The resemblance is very good. The stagnation point has
been found very accurately. Closer to the highest value of the pressure, the
results are slightly less accurate, however still very satisfying. In calculating
these results we did not refine the grid on the sphere, because this is also
impossible for the case of the tanker. The grid on the free surface, however,
was much finer then the grid used in the calculation of the drift forces. If
this had not been done, the pressure at the water-line would have been far
less accurate. We can conclude that the use of the matrix equation causes
no significant errors in the double-body potential.
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Figure 5.6: Pressure on the tanker due to the double-body potential.
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The results for the pressure on the tanker are given in Figure 5.6. Again,
red represents the lowest pressure and purple the highest. Zero pressure is
shown as orange. Along major parts of the hull, the double-body potential
seems to equal the undisturbed flow, as could have been expected. At the
bow of the tanker, the flow is bent aside and to the bottom, as can be seen
from the green spots. The same seems to occur at the stern. Unfortunately,
within the green sectors on the hull, some red spot appear, representing
stagnation points. The location of these points is very unrealistic. Thus
we must conclude that these red spots are due to inaccurate numerical
differentiation. Again, this could have been expected, because the length
scale occurring in the velocity field is much smaller then the length of the
waves to be studied. The grid on the hull, however, was generated in order
to represent the waves accurately. For a good representation of the double-
body potential on the hull a finer grid has to be used. However, most of
the pressure seems to be reliable, thus we proceed using this estimation.
As was done in the test-case of the sphere, the grid on the free surface
was made much finer then the grid used in the drift force calculations. The
potentials in the latter grid were interpolated in the grid of the double-body
potential, or taken to be Ux if extrapolation was needed. This means that
only for the elements close to the hull, the double-body potential was taken
into account, and that further away from the hull the flow was assumed to
be undisturbed.
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Figure 5.7: Added mass in sway com-

pared with Oortmerssen, Fn = 0.
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Figure 5.8: Added damping in sway

compared with Oortmerssen, Fn = 0.

5.4 Results

We calculated the hydrodynamic coefficients and the drift forces and mo-
ments for the 200kDWT tanker sailing in relatively shallow water: the water
depth is 1.2 times the draught. This is a rather extreme condition for a su-
pertanker, resembling harbour conditions. It also imposes insurmountable
problems for many programmes calculating drift forces and moments. Nev-
ertheless, our method will be shown to yield good results. The results were
calculated for three different speeds: Fn = 0, Fn = 0.04, and Fn = 0.08 (
0, 5 and 10 knots).
The mesh on the hull, shown in Figure 5.1, consisted of 676 panels. As
mentioned in the previous section, this mesh is fine enough to discretize
derivatives on the hull accurately for the wave potentials. For the local
fluid velocities, the double-body potential, a finer grid should be used. Al-
though this finer mesh, consisting of 1048 panels, was available, it has not
been used, because the calculation time would increase considerably. This
was mainly due to the fact that the free surface had to be discretized much
finer as well.

The mesh on the free surface was generated using the water-line shape of
the hull. It was built up out of 20 non equidistant rings. The nodes of
an outer ring were calculated by multiplying the nodes of an inner ring
by a constant factor, ranging from 1.038 to 1.133 for the x-coordinate and
from 1.116 to 1.246 for the y-coordinate. The last ring then approximates
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with Oortmerssen, Fn = 0.
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Figure 5.10: Added damping in roll com-

pared with Oortmerssen, Fn = 0.
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Figure 5.11: Added mass in surge for

three velocities.
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Figure 5.12: Added damping in surge for

three velocities.

a rectangle. The multiplication factors where calculated such that the last
ring, the artificial boundary, was at least three wavelengths away from all
water-line elements on the hull. Tests showed that reflections did occur,
both from the boundary and from the outer elements, which are very large
compared to the wavelength. The distance from the hull and the num-
ber of rings was chosen such that the reflection was minimal. However,
especially for higher velocities, reflections are caused by the neglect of the
tangential derivatives of the potential in the absorbing boundary condition.
Taking these derivatives into account would need a much finer grid on this
boundary, thus yielding a much larger computation time. To overcome
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Figure 5.13: Added mass in sway for

three velocities, legend as in Figure 5.11.
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Figure 5.14: Added damping in sway for

three velocities, legend as in Figure 5.11.

2 3 4 5
3

3.5

4

4.5

5
A33

ρ△

ω
′

Figure 5.15: Added mass in heave for

three velocities, legend as in Figure 5.11.
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Figure 5.16: Added damping in heave

for three velocities, legend as in Figure

5.11.

this problem, a new boundary condition is currently being developed, see
Sierevogel [28].
The time integration was carried out over a time interval of 4 periods. On
each period 50 time steps were taken.

5.4.1 Hydrodynamic coefficients

Figures 5.7 through 5.10 show some of the main hydrodynamic coefficients
for zero forward speed compared with both measurements and calculations
of Oortmerssen [19]. It can be seen that the agreement with the calcu-
lations is very good. The agreement with the measurements, however, is
less convincing for the roll coefficients. This is due to viscous effects not
accounted for in our model, and can be seen as defects of potential theory.
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Figure 5.17: Added mass in roll for three

velocities, legend as in Figure 5.11.
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Figure 5.18: Added damping in roll for

three velocities, legend as in Figure 5.11.
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Figure 5.19: Added mass in pitch for

three velocities, legend as in Figure 5.11.
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Figure 5.20: Added damping in pitch for

three velocities, legend as in Figure 5.11.

The results including forward speed, shown in Figures 5.11 through 5.22,
can not be compared with literature. It can be observed that some coeffi-
cients are almost independent of speed. The coefficients which do depend
on speed, are still smooth functions of frequency, which suggests that the
accuracy of the results is reasonable.
In Figures 5.23 through 5.46 are shown the coupled hydrodynamic coeffi-
cients. For zero forward speed they do not agree as well with Oortmerssen
as the main coefficients did. However, it should be noted that the forces
from which these coefficients are calculated, are very small compared to the
main forces. Thus these coefficients are very sensitive to numerical errors.
Furthermore, the damping coefficients should satisfy a symmetry relation,
as derived by Timman [29]. This relation says that

Bij = Bji
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Figure 5.21: Added mass in yaw for

three velocities, legend as in Figure 5.11.
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Figure 5.22: Added damping in yaw for

three velocities, legend as in Figure 5.11.
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Figure 5.23: Coupled added mass from

surge into heave for three velocities, leg-

end as in Figure 5.11.
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Figure 5.24: Coupled added damping

from surge into heave for three velocities,

legend as in Figure 5.11.

for zero forward speed. It can be seen from Figures 5.26, 5.40, 5.34, 5.42,
5.32, and 5.24 that this relation is indeed fulfilled for B15, B35 and B13.
Thus we can conclude that our results our reasonably accurate.
All coupling coefficients do depend on the forward speed, as could have been
expected. Some coefficients become rather wild functions of frequency. Al-
though this may be physical, this wild behaviour is probably partly due to
lack of accuracy. These coupling coefficients are very sensitive to the accu-
racy of the derivatives of the double-body potential. As explained earlier,
the first-order derivative may lack accuracy at some elements on the hull.
The second-order derivative of the double-body potential is probably also
not accurate. This can be overcome by using a higher-order panel method
for the calculation of the stationary flow. This will be part of future re-
search.
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Figure 5.25: Coupled added mass from

surge into pitch for three velocities, leg-

end as in Figure 5.11.
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Figure 5.26: Coupled added damping

from surge into pitch for three velocities,

legend as in Figure 5.11.
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Figure 5.27: Coupled added mass from

sway into roll for three velocities, legend

as in Figure 5.11.
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Figure 5.28: Coupled added damping

from sway into roll for three velocities,

legend as in Figure 5.11.

5.4.2 Improvement of roll damping

The results for the hydrodynamic coefficients presented in the previous sec-
tion, were all calculated using potential theory as developed in chapter 1.
However, it is well known that some coefficients do not agree with measure-
ments due to viscous effects. One of these coefficients is the roll damping,
B44. This coefficient is very important when simulating roll motion due
to beam or bow-quartering waves. It appears that the drift forces due to
beam waves are overestimate by a factor 2. In order to obtain more reliable
results for these headings, the roll-damping coefficient has to be corrected
for effects not included in potential theory.
The method used to improve the roll-damping coefficient is based on work
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Figure 5.29: Coupled added mass from

sway into yaw for three velocities, legend

as in Figure 5.11.
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Figure 5.30: Coupled added damping

from sway into yaw for three velocities,

legend as in Figure 5.11.
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Figure 5.31: Coupled added mass from

heave into surge for three velocities, leg-

end as in Figure 5.11.
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Figure 5.32: Coupled added damping

from heave into surge for three velocities,

legend as in Figure 5.11.

published by Ikeda [9]. The method has been programmed by Journee [10]
for the programme SEAWAY used at the Department of Maritime Tech-
nology of the Delft University of Technology. It distinguishes between five
different kinds of roll-damping corrections: frictional damping, eddy mak-
ing damping, lift damping, bilge keel damping, and a correction due to
forward speed. The last two correction are not used in our calculations:
forward-speed effects have already been taken into account and no bilge
keels are present.

The correction due to frictional effects is given by

B44f =
4

3π
Ω1ωρr3

fSfCf

(

1.0 + 4.1
U

ωL

)

, (5.1)
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Figure 5.33: Coupled added mass from

heave into pitch for three velocities, leg-

end as in Figure 5.11.
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Figure 5.34: Coupled added damping

from heave into pitch for three velocities,

legend as in Figure 5.11.
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Figure 5.35: Coupled added mass from

roll into sway for three velocities, legend

as in Figure 5.11.
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Figure 5.36: Coupled added damping

from roll into sway for three velocities,

legend as in Figure 5.11.

with

Sf = L (1.7D + CbB) ,

rf =
1

π

{

(0.887 + 0.145Cb)
Sf

L
+ 2zg

}

,

Cf = 1.3428R−0.5
n + .0014R−0.114

n ,

Rn = 0.512 (rfΩ1)
2 ω

ν
,

and Cb the block coefficient.
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Figure 5.37: Coupled added mass from

roll into yaw for three velocities, legend

as in Figure 5.11.
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Figure 5.38: Coupled added damping

from roll into yaw for three velocities, leg-

end as in Figure 5.11.
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Figure 5.39: Coupled added mass from

pitch into surge for three velocities, leg-

end as in Figure 5.11.
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Figure 5.40: Coupled added damping

from pitch into surge for three velocities,

legend as in Figure 5.11.

The correction due to lifting effects is given by

B44l =
1

2
ρL0.15D3Ukn

(

1.0 + 1.4
zg

0.5D
+ 0.7

z2
g

0.15D2

)

, (5.2)

with

kn =
2πD

L
+ χ

(

4.1
B

L
− 0.045

)

,

and

χ =











0.00 Cm < 0.91

106 (Cm − 0.91)2 − 700 (Cm − 0.91) 0.91 < Cm < 1.00
0.35 Cm > 1.00

.
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Figure 5.41: Coupled added mass from

pitch into heave for three velocities, leg-

end as in Figure 5.11.
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Figure 5.42: Coupled added damping

from pitch into heave for three velocities,

legend as in Figure 5.11.
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Figure 5.43: Coupled added mass from

yaw into sway for three velocities, legend

as in Figure 5.11.
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Figure 5.44: Coupled added damping

from yaw into sway for three velocities,

legend as in Figure 5.11.

Here Cm is the midship section coefficient.

The formulae for the eddy-making damping are based upon strip theory.
The ship hull is divided into separate sections, and for each of these sections
the damping is calculated using empirical formulae. Because of the length
of these formulae, they are omitted here.

5.4.3 Drift forces and moments

The drift forces and moments have been calculated for several speeds and
headings. Figure 5.47 shows the horizontal drift force for zero forward
speed. The computations are compared with the results found by Pinkster,
both calculations (asterisks) and measurements (circles). At higher fre-
quencies, the agreement with the calculations of Pinkster is very good. For
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Figure 5.45: Coupled added mass from

yaw into roll for three velocities, legend

as in Figure 5.11.
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Figure 5.46: Coupled added damping

from yaw into roll for three velocities, leg-

end as in Figure 5.11.
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Figure 5.47: Horizontal drift force in

head waves for zero forward speed.
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Figure 5.48: Horizontal drift force in

head waves for three velocities.

middle frequencies our results are slightly higher, which is in accordance
with some of the measurements. Note that the measurements are not en-
tirely reliable, as can be seen from the scattered results.

Figure 5.48 shows the horizontal drift force in head waves for 0, 5 and 10
knots. With increasing speed, the maximal value of the drift force becomes
considerably larger. This is mainly due to the blunt bow of the hull. At
higher frequencies the curves seem to oscillate, which may be due to lack
of accuracy, or may be physical. It should be noted that measurements
show similar oscillations. In Figure 5.49 and 5.50 are given the vertical
drift force and the pitch drift moment respectively. They remain smooth
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Figure 5.49: Vertical drift force in head

waves for three velocities, legend as in

Figure 5.48.
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Figure 5.50: Pitch drift moment in head

waves for three velocities, legend as in

Figure 5.48.

functions of frequency, even for higher velocities. This suggests that the
calculations were reasonably accurate, and that the oscillatory behaviour of
the horizontal drift force may be physical. On the other hand, tests showed
that the drift-force component due to the relative wave height is very sen-
sitive to the grid-size close the the hull. This may lessen the accuracy of
the horizontal drift-force in particular. Unfortunately, no grid refinement
is possible without increasing the use of computer memory considerably.
During the calculations it appeared that the drift forces and moments in
the other directions were not zero, despite the symmetry of the problem
in the y-plane. This was due to the fact that, although all matrices and
vectors obeyed the symmetry relation, the result of the matrix solver for
the potential was not symmetric. Obviously, the condition number of the
matrix had increased when introducing forward speed, thus yielding an
inaccurate decomposition of the matrix. This problem was overcome by
imposing symmetry unto the potential at every time step. In the future,
this may be done by using double-precision variables, by using an iterative
solver for the matrix equation, or by using a pre-conditioner in order to
improve the condition number of the matrix.

We also calculated results for following waves. However, for the speeds and
frequencies involved in this study, the following waves are nearly overtaken
by the ship. The velocity of the ship was close to or even larger than the
group velocity of the waves involved. This means that in fact the ship
was experiencing head waves with a very large wavelength. The numerical
simulation of these waves requires a very large and fine mesh. Given the
maximal memory space available on our computer, it was impossible to do
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Figure 5.51: Horizontal drift force in

head waves for the lower velocities.
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Figure 5.52: Vertical drift force in head

waves for the lower velocities.

1 2 3 4 5

−3

−2

−1

0

1
〈M2y〉

ρg△
2

3 ζ2
a

ω
′

0

Figure 5.53: Pitch drift moment in head

waves for the lower velocities, legend as

in Figure 5.51.
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Figure 5.54: Horizontal drift force in fol-

lowing waves for the lower velocities, leg-

end as in Figure 5.51.

these simulations accurately.
In order to show that in principle drift forces and moments can be calcu-
lated accurately for both head and following waves, results are presented
for Fn = .004 and Fn = .008, a tenth of the original speeds, see Fig-
ures 5.51 through 5.56. For these low velocities only the horizontal drift
force seems to depend on the velocity. During the simulations no prob-
lems occurred: the accuracy of the double-body potential is less critical for
the drift forces, the condition number of the leading matrix is still within
reasonable bounds, and the wave number of the waves involved are not as
extreme.

From Figures 5.51 and 5.48 it may be seen that for low velocities the increase
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Figure 5.55: Vertical drift force in fol-

lowing waves for the lower velocities, leg-

end as in Figure 5.51.
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Figure 5.56: Pitch drift moment in fol-

lowing waves for the lower velocities, leg-

end as in Figure 5.51.
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Figure 5.58: Horizontal drift force as a

function of speed for ω
′

= 3.52.

of the drift force is linear in the velocity, while for higher velocities this
increase is less than linear. This is also shown in Figures 5.57 and 5.58,
where the drift force is given as a function of the forward speed for two
frequencies.

This behaviour of the drift force has also been observed by Wichers [34]
when performing towing tests in water of infinite depth. For low velocities
the drift force is linear in the speed, for middle velocities more than linear
and for high velocities less than linear.

Finally, Figures 5.59 and 5.60 show the roll motion and transverse drift
force in beam waves, respectively. As mentioned in section 5.4.2, the roll
motion is highly exaggerated using only potential damping. Inclusion of
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Figure 5.60: Transverse drift force due

to beam waves, Fn = 0.

viscous effects in the damping reduces the roll amplitude near resonance
considerably. Away from the resonance frequency the roll motion is simu-
lated accurately also using potential damping. This is due to the fact that
viscous damping is only important for large amplitudes of the roll motion.
The transverse drift force near resonance is halved using the viscous damp-
ing. The drift force is overestimated, however, over a wide range of fre-
quencies, even for frequencies for which the agreement in roll motion is
fine. Thus it can be concluded that the drift force is influenced by the
viscosity not only indirect through the roll motion, but also direct through
the waves.

5.5 Conclusions and recommendations

In this chapter we calculated the hydrodynamic coefficients and the drift
forces and moments for a 200kDWT tanker. For zero forward speed, the
results agree reasonably well with results found by Oortmerssen [19], whose
results are probably less accurate, and with Pinkster [21]. Including for-
ward speed yields results which look plausible compared to the zero forward
speed case. No results have been presented in literature yet to compare
with.
It should be noted that the results for positive forward speed depend
strongly on the accuracy of the double-body potential used in the calcula-
tions. Because the grid on the hull was only meant to represent accurately
gradients of the time-dependent potentials, the accuracy of the double-
body potential may not be very good. Therefore more reliable results will
be obtained by using a finer grid on the hull or, preferably, by using a
higher-order panel method.
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Another source of errors in the calculations appeared to be the fact that
the condition number of the leading matrix becomes large when introducing
forward speed. In future research, attention should be paid to precondition-
ing or iterative techniques, and perhaps to double-precision calculations.
When simulating higher velocities, the wave numbers of the waves involved
become rather extreme. The ratio of the largest and the smallest wave-
lengths may be larger than 8. This imposes severe restrictions on our
mesh: it should be both large to prevent reflections and fine to represent
both waves accurately. The current method used for the generation of the
free-surface mesh could not cope with these restrictions. More research is
needed in order to develop a more sophisticated mesh generator combined
with a better absorbing boundary condition.



Chapter 6

General time signals

In this chapter the theory and numerical method used in the previous chap-
ters, will be extended to general time signals. The equation of motion will
be written in a more general form containing a convolution integral of the
step-response function. This function will be used to calculate the hydrody-
namic coefficients for the two-dimensional problem of a cylinder of infinite
length, studied in chapter 3.
In the latter part of this chapter, a combination of two sine-functions will
be used as incoming wave, in order to study slow-drift motion effects.

6.1 Introduction

In the previous chapters, various geometries have been studied and hydro-
dynamic coefficients and drift forces have been calculated. These calcula-
tions were done under the assumption that the incoming wave was sinu-
soidal. This assumption was made in order to simplify both the equation
of motion and the absorbing-boundary condition, and to test our numeri-
cal algorithm. It also made the comparison possible with results found in
literature using a frequency-domain approach.
However, it is clear from elementary water-wave knowledge that ocean
waves are far from sinusoidal. Using the frequency domain, it is assumed
that the waves can be decomposed in several harmonic waves. For each
frequency separate calculations have to be carried out. The forces on the
object can then be calculated using the Fourier-transform of the incoming
wave. Inverse Fourier-transforming then gives the time history of the actual
force.
The time domain, however, allows us to simulate the full wave itself, thus
needing only one calculation per wave. Furthermore it allows us to calculate
the hydrodynamic coefficients for all frequencies in one single calculation.
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Thus it is very useful to drop the assumption of harmonic waves and to
study general time signals instead.

Dropping the assumption of harmonic waves forces us to reconsider some
elements of our theory. The absorbing-boundary condition used in the pre-
vious chapters only absorbs waves of one specific frequency. Thus a more
general condition is needed in order to absorb the outgoing waves. This
method will be discussed in section 6.2. Furthermore the equation of motion
has to be modified. In this equation, the added mass and damping coeffi-
cients depend on frequency; they are replaced by a memory integral over
the step-response function, see section 6.3. Then the hydrodynamic coeffi-
cients can be calculated using this response function. The results found will
be compared with the results of chapter 3 and with the results of Vugts [31].

Having found a new absorbing-boundary condition and the appropriate
equation of motion, the effect of a sum of two harmonic functions can also
be studied. The second-order quantities will then contain sine-functions
of the sum frequency and the difference frequency. Especially the sine-
function with the difference frequency, a slowly varying function, may have
large influence on the object, the so-called slow-drift forces. Especially for
moored structures, the difference frequency may be in the range of the
eigen-frequency of the mooring system. This may cause enormous move-
ments due to very small waves. In section 6.4 it will be shown that this
effect can be calculated as well, and preliminary results will be given.

6.2 General absorbing-boundary condition

In chapter 1 the hydrodynamic theory has been given for a sailing object in
waves. To make sure that this mathematical model has a unique solution, a
numerical radiation condition has been introduced, thus guaranteing that
waves generated by the body will travel away from the body. In most
analytical studies, this condition is imposed at infinity. However, this was
and will not be possible in our numerical calculations, because our fluid
domain has to be finite. Thus a numerical equivalence of the radiation
condition has to be found. Therefore an artificial boundary is introduced,
limiting the computational domain, which absorbs the outgoing waves, and
reflects the incoming waves. Using such a boundary yields a unique and
physically correct solution.
Several methods have been developed to ensure the absorbing property of
the boundary. As stated in chapter 1 the most promising method is the
use of partial-differential equations as boundary condition on the artificial
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boundary. The condition chosen there and used throughout the previous
chapters is

N
∏

i=1

(

∂φ

∂t
+ ci

∂φ

∂n

)

= 0 . (6.1)

When this condition is applied to the artificial boundary, this boundary
absorbs waves whose wave velocities are included. However, waves with
different velocities, i.e. waves with different frequencies, are only partially
absorbed and thus partially reflected. This is not a major problem when
only two different wave velocities are present in the wave which has to be
absorbed. However, when studying general time signals, an infinite number
of frequencies are present, thus yielding major reflections from the bound-
ary. Therefore a frequency-independent condition has to be found in order
to absorb general time signals. Such a condition has been developed re-
cently by Sierevogel [28] by using a Dirichlet-to-Neumann method, first
developed by Givoli [6]. This condition will be explained briefly here.

The computational domain is split up into an interior and an exterior do-
main. In the interior domain, the problem is solved as described in chap-
ter 1, however without specifying a radiation condition on the boundary.
This yields an under determined system of equations. The extra equations
relating φ and ∂φ

∂n are based upon the behaviour of the solution in the exte-
rior region. Simply demanding continuity of the potential and its derivative
would lead to a leading matrix with a block structure, as used by for in-
stance Tulin [30]. However, this implies that the matrix becomes much
larger than the matrix arising from using our original condition, because of
the extra elements in the exterior domain.
An alternative way of describing the relation between the potential and
its derivative can be found by solving a different problem in the exterior
domain. In this part of the computational domain earth-fixed coordinates
are used. Then the free-surface condition can be discretized into

φz,i+1 + µφi+1 = µ (2φi − φi−1) at z = 0 , (6.2)

with

µ =
1

g(∆t)2
.

A Green’s function has been found by Sierevogel satisfying

∆G = 0 in exterior
Gz + µG = 0 at z = 0

Gz = 0 at bottom
G = 0; Gn = 0 at infinity .

(6.3)
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As can be seen, this Green’s function satisfies part of the discretized free-
surface condition. This has the major advantage that, after applying
Green’s theorem, a relation can be derived between φ and ∂φ

∂n on the ar-
tificial boundary which only involves values of the potential on the free
surface at earlier time levels. This implies that the matrix block associated
with the exterior domain can be shifted to the right-hand side of the matrix
equation, thus yielding a much smaller matrix than the matrix arising from
just demanding continuity.

The above method is independent of the frequency and of the actual wave
profile. This also implies that the boundary can be shifted much closer to-
wards the object then our initial partial-differential equation (6.1). Because
the condition is independent of frequency, it will be used in the calculations
in this chapter.

6.3 Step-response functions

Besides the absorbing-boundary condition, another important part of the
mathematical model has to be revised for general time signals: the equation
of motion. For purely harmonic motion this equation was written as (1.26):

(M + A)
∂2~Y

∂t2
+ B

∂ ~Y

∂t
+ C~Y =

(

~Finc
~Minc

)

,

with ~Y = (X1,X2,X3,Ω1,Ω2,Ω3)
T . The matrices A and B are the added

mass and damping matrices, both dependent of frequency. Because the
coefficients depend on the frequency of the forcing term, this differential
equation is not a proper time-domain equation. Ogilvie [18] showed that
this equation should be written as an integro-differential equation:

(

M + A
) ∂2~Y

∂t2
+ B

∂~Y

∂t
+ C~Y +

+

t
∫

0

K(t − s)
∂ ~Y

∂s
(s)ds =

(

~Finc
~Minc

)

. (6.4)

The matrix function K(t) is the step-response matrix for the hull, which is
not dependent of frequency. This function is sometimes erroneously called
the impulse-response function. As may be seen from the above formula,
the function is a response to an impulse in the velocity, thus to a step in
the displacement.
The matrices A and B only depend on the geometry of the hull and the
Froude number. Note that they do not depend on frequency. The added
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mass and damping as defined in the frequency domain can be calculated
using

A(ω) = A −
1

ω

∞
∫

0

K(t) sin(ωt)dt , (6.5)

and

B(ω) = B +

∞
∫

0

K(t) cos(ωt)dt . (6.6)

This means that once the hull-dependent matrices K(t), A and B are
known, the added mass and damping can be calculated for every relevant
frequency.

The step-response function can be calculated in an analogue manner as the
hydrodynamic coefficients were calculated in the previous chapters. This
was done by fitting the calculated force to the prescribed acceleration and
velocity of the hull. In order to find correct coefficients, the force was cal-
culated for time interval long enough to have a harmonic force. The force
over the first few periods was neglected in the fit. However, these first pe-
riods contain vital information about the function K(t). So when trying to
calculate the step-response function, we are especially interested in the first
response of the system to a displacement, thus reducing the time interval
over which we have to integrate. To ensure accuracy, however, the time
step has to be reduced too.
As the displacement, velocity and acceleration of the hull are prescribed,
we can estimate K(t) by solving the equation of motion (6.4). If the dis-
placement is known at times ti, the step-response function K(ti) can be
calculated at these same times, by using a least-square method. However,
the hull-dependent coefficients A, B and C have to be estimated in the same
fitting procedure. Thus we have an under-determined system of equations:
N equations for N + 3 unknowns. This gives rise to strange results for the
step-response function, as will be discussed in section 6.3.1.

First we must pay some attention to the displacement we have to pre-
scribe. The name of the step-response function suggests the the displace-
ment should be a step function. However, the second-order time derivative
of this function is undefined at t = 0, thus making it impossible to give an
accurate estimate of A and K(0). Both are very important for the calcu-
lation of both the added mass and damping coefficients. Thus we must use
a displacement function which has a finite derivative at t = 0. This can
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be achieved by multiplying the step function with a smoothing function in
the neighbourhood of t = 0. A second disadvantage of the step function,
however, is the fact that it includes all possible frequencies. This implies
that waves will be generated with very small and very large wavelengths.
This will of course lead to numerical problems.
Another possibility for the displacement function would be a sine function
of a given frequency. The damped version of this function is infinitely con-
tinuous differentiable, thus eliminating the problems at t = 0. However, the
function K(t) resulting from this displacement function will contain infor-
mation of one specific frequency. Therefore the results for the added mass
and damping coefficients will only be accurate for this frequency. Conclud-
ingly it can be said that the displacement function must contain enough
information for all frequencies of interest and must be twice continuous
differentiable at t = 0.

A displacement function which meets all demands, is given by

f(t) =











0 t < 0
(

M
∑

i=1

sin(ωit)

ωi

)

(

1 − e−ct
)3

t ≥ 0
. (6.7)
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Figure 6.1: Velocity function based on

ω
′

= 0.21, 0.36 and 1.29.
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Figure 6.2: Fourier-transform of the ve-

locity function.

The sine functions are scaled in order to ensure that all frequencies equally
contribute to the velocity. The function is damped by the last factor in
order to make it continuously differentiable in t = 0. The constant c is
positive. Tests showed that three frequencies are enough to have suffi-
cient information throughout the frequency-domain of interest. Figures 6.1
and 6.2 show the velocity function and its corresponding Fourier-transform
for M = 3 and ω

′

= 0.21, 0.36 and 1.29. It can be seen that information is
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present in the velocity function for frequencies from ω
′

= 0.2 to ω
′

= 1.8. So
this function may be used in the calculation of the step-response function.

6.3.1 Fitting of the step-response function using Laguerre

polynomials

As mentioned before, the most straightforward way of calculating the step-
response function is by using a least-squares method on the different forces
calculated from the equation of motion and from potential theory. However,
the system of equations will be under determined, thus yielding possible
sources of errors. If we would allow every possible value of Kij at any time
ti without demanding some sort of continuity, the result for Kij(t) might
include delta pulses superimposed upon the wanted function. These delta
pulses would alter the result for A considerably. Thus we have to require
that Kij(t) is a smooth function of time.
An elegant way of imposing continuity in time upon the step-response func-
tion is expressing the function in terms of a sum of orthogonal polynomials.
To avoid infinite sums, the orthogonal polynomials should have the same
behaviour as the function we want to calculate: a damped, oscillatory func-
tion. This requirement is fulfilled by the generalized Laguerre polynomials.
Note that, because we are only interested in velocities and frequencies for
which τ < 1

4 , these functions have the correct asymptotical behaviour.
Thus we may write

Kij(t) =
N
∑

p=1

cpL
′

p(σ(t)) + ε(t) , (6.8)

with

L
′

p(x) = e−
x
2 Lp(x) ,

and

σ(t) =
σ1t

σ2 − t
; σ1, σ2 > 0 .

The function ε(t) is assumed to be small and to decay with increasing N .
The scale function σ is introduced in order to match the time scale of the
Laguerre polynomials with the time scale of the step-response function.
The coefficients cp can be determined using a least-squares fit on the equa-
tion of motion (6.4). The number of terms in the sum-representation of
Kij(t) is much smaller than the number of time steps, thus yielding an
over-determined system of equations.
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To improve the result for the step-response function some analytical knowl-
edge about the behaviour of the function has been used in the least-squares
fit. Because the damping for zero frequency is zero, we can conclude from
(6.6) that

∞
∫

0

Kij(t)dt + bij = 0 . (6.9)

Furthermore we can invert the cosine transform of the step-response func-
tion:

Kij(t) =
2

π

∞
∫

0

(

bij(ω) − bij

)

cos(ωt)dω .

From this we can conclude that

∂Kij

∂t
(0) = 0 . (6.10)

Imposing the latter condition improves the results close to t = 0 consider-
ably, which is a sensitive part of the step-response function. Equation (6.9)
improves the results for t → ∞, which are not part of the fit. However, the
asymptotical behaviour is necessary for the calculation of the added mass
and damping coefficients.

6.3.2 Results

We calculated the step-response functions and the added mass and damping
coefficients using the above method for the two-dimensional cylinder of
chapter 3. Figures 6.3 and 6.4 show the step-response functions for heave
and sway respectively. The results were calculated using the displacement
function as discussed in the previous section. The time step used was
∆t = .004; the time integration lasted 1000 steps. The grid size was chosen
such that even the shortest wave was represented accurately. The absorbing
boundary was adjusted according to the guidelines of Sierevogel [28] based
on the lowest frequency. The differences between the two step-response
functions is remarkable: the sway step-response function oscillates much
more than the heave step-response function. Note that both functions
indeed have zero derivative at t = 0. The integrals over the functions are
indeed equal to the asymptotical damping, with an error of the order of
10−10. The relative error in the fit was in the order of 0.1%. Thus the
assumption that the truncation-error in the sum-representation is small,
was justified.
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Table 6.1: Asymptotical values of added mass and damping coefficients.

A

ρd2

B

ρd2

heave 0.3998 0
sway 0.1802 0

Table 6.1 shows the asymptotical values of the added mass and damping
coefficients. The added mass coefficient in heave agrees very well with the
theoretical result of 1

8π (= 0.3927). The added damping coefficients have
been put to zero manually in the fit, in order to obtain a better fit result.
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Figure 6.3: Step-response function in

heave, Fn = 0.
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Figure 6.4: Step-response function in

sway, Fn = 0.

Knowing the step-response functions, the added mass and damping coef-
ficients can be calculated, as shown in equations (6.5) and (6.6). Because
the step-response function has been written as a sum of Laguerre polyno-
mials, the integrals to infinity are not disturbed by finite knowledge of the
integrant, provided that the time integration of the hydrodynamic equa-
tions was carried out over a long enough time interval. The results of the
hydrodynamic coefficients are given in Figures 6.5 and 6.6 for heave and in
Figures 6.7 and 6.8 for sway. Clearly, the new results agree much better
with the measurements of Vugts than the old results did. In heave the
results for lower frequencies are much better, while in sway the extreme
values of the coefficients are much more convincing. This suggests that
the method used in chapter 3 for calculating the added mass and damping
coefficients, was not accurate enough. Apparently, the time signals for the



110 Chapter 6. General time signals

0 0.5 1 1.5

0.2

0.4

0.6

0.8

1 Vugts

old

response

Azz

ρd2

ω
′

Figure 6.5: Added mass coefficient in

heave, Fn = 0.
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Figure 6.6: Added damping coefficient

in heave, Fn = 0.
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Figure 6.7: Added mass coefficient in

sway, Fn = 0; legend as in Figure 6.5.
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Figure 6.8: Added damping coefficient

in sway, Fn = 0; legend as in Figure 6.5.

force were not sinusoidal yet, thus leading to errors in the fitting proce-
dure. This could have been overcome by integrating more periods in time
combined with the use of a better absorbing condition.
In sway the added damping coefficient seems to lack accuracy for low fre-
quencies. This can be explained by the fact that the lowest frequency has a
wavelength 100 times larger than the highest frequency used in the calcu-
lation. This makes it fairly impossible to represent both waves accurately
with an equidistantial grid over one wavelength of the longest wave. This
could have been overcome by using a non-equidistantial grid or by calcu-
lating the step-response function for the lower frequencies separately.
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Table 6.2: Asymptotical values of added mass and damping coefficients in heave.

Azz

ρd2

Bzz

ρd2

Axz

ρd2

Bxz

ρd2

Fn = 0 0.3998 0 0 0
Fn = .07 0.3992 0 -.0007 0.6796
Fn = .14 0.4097 0 -.0018 1.3740

6.3.3 Forward speed effects

In the equations described in this chapter thus far, no reference is made to
the forward speed of the object. Indeed all equations remain valid when
forward speed is included. Thus the same procedure as above may be used
to study the effect of forward speed on the step-response functions.
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Figure 6.9: Step-response function

Kzz(t) for three velocities.
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Figure 6.10: Step-response function

Kxz(t) for three velocities.

Figures 6.9 and 6.10 show the step-response functions in heave for the z−
and x−direction for Fn = 0, .07, and .14. The value of Kzz(0) depends only
little on the velocity U . However, the function seems to steepen for small
t, and to deaden less quickly for large t. This means that the influence of a
disturbance is much longer perceptible for higher velocities. The function
Kxz(t) seems to depend linearly on the velocity. For zero forward speed, this
function is of course zero. The response function for Fn = .14 is ’exactly’
twice the function for Fn = .07. This result has been obtained despite the
fact that second-order terms in the velocity were taken into account in the
free-surface. It implies that the coupled hydrodynamic coefficients depend
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linearly on the forward speed. This can also be seen from Table 6.2: the
asymptotical values of the coupled added mass and damping coefficients
are linear in the forward velocity.
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Figure 6.11: Added mass coefficient in

heave.
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Figure 6.12: Added damping coefficient

in heave.

0.5 1 1.5
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04
Axz

ρd2

ω
′

Figure 6.13: Coupled added mass coef-

ficient in heave.
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Figure 6.14: Coupled added damping

coefficient in heave.

Figures 6.11 through 6.14 show the (coupled) added mass and damping
coefficients calculated using the above step-response functions. The drawn
lines represent the old calculations; the circles and asterisk the new ones.
The added mass agrees very well with the old calculations; some deviations
occur in the added damping coefficients, especially for lower frequencies.
Again it should be noted, that the longest and the shortest wavelength
differ more than a factor 100, thus reducing the accuracy of the results.
The coupled added mass does not show a minimum as the old coefficients
did. This may be caused by accuracy problems, because the coupled forces
are very small. The coupled added damping agrees very well with the old
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Table 6.3: Asymptotical values of added mass and damping coefficients in sway.

Axx

ρd2

Bxx

ρd2

Azx

ρd2

Bzx

ρd2

Fn = 0 0.1802 0 0 0
Fn = .07 0.1898 -.5664 -.6666 0
Fn = .14 0.1969 -.6785 -1.3369 0

coefficients.

The equivalent results for sway motion are given in Figures 6.15 through
6.20. Again, the influence of the forward speed on the step-response func-
tion Kxx(t) is small; the function Kzx(t) seems to depend linearly on the
speed. The added mass and damping are improved as were the coefficients
for zero forward speed. For low frequencies, the lack of accuracy becomes
more pronounced. The coupled coefficients agree reasonably well with the
old coefficients, and are indeed linearly dependent of speed.
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Figure 6.15: Step-response function

Kxx(t) for three velocities; legend as in

Figure 6.9.
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Figure 6.16: Step-response function

Kzx(t) for three velocities; legend as in

Figure 6.9.

6.4 Slow-drift forces

In this section we will consider the slow-drift forces of a moored object, i.e.
without forward speed. Slow-drift forces occurs when two harmonic waves
excite the object into first-order motion. The two waves interact generat-
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Figure 6.17: Added mass coefficient in

sway; legend as in Figure 6.11.
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Figure 6.18: Added damping coefficient

in sway; legend as in Figure 6.11.
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Figure 6.19: Coupled added mass coef-

ficient in sway; legend as in Figure 6.11.
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Figure 6.20: Coupled added damping

coefficient in sway; legend as in Figure

6.11.

ing a second-order force consisting of double-frequency components, sum-
frequency components and difference-frequency components. These last
components may have frequencies close to an eigen-frequency of the moor-
ing system of the object. Thus these forces may generate large movements,
despite being small themselves.

The exciting force for the slow-drift motion is part of the total second-
order force. In chapter 1 an expression is given for this second-order force,
equation (1.27). However, in deriving this formula only those terms were
taken into account, which have a non-zero mean value. This means that
some terms now needed for the calculation of the slow-drift forces, were
neglected. These terms all contain the second-order potential. Thus, using
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the full formula for the second-order force leads to additional calculations
of the second-order potential. These calculations would increase the com-
putational burden with a factor 2, and some additional programming would
be needed. The intention of this section, however, is not to calculate the
slow-drift forces exactly, but to show that it is possible to calculate this
motion using our numerical algorithm. Thus, although in principle calcu-
lable, terms containing the second-order potential will be omitted. For a
more extensive study of the principles of slow-drift forces and the condition
which allow our neglect, see for instance Pinkster [20] and [21].

As stated before, the slow-drift forces occur when the incoming wave con-
sists of two harmonic waves. If the incoming wave contains two frequencies,
then the first-order potential can be written as

φ(t) = A1(~x) sin(ω1t + γ1(~x)) + A2(~x) sin(ω2t + γ2(~x)) ,

because of the linearity of the system. The first-order force, and thus the
motion, will be of the form

~F1 = ~A1 sin(ω1t + γ1) + ~A2 sin(ω2t + γ2) .

Because each term in the second-order force is a product of two first-order
quantities, the second-order horizontal force may be written as

F2x =
2
∏

i=1

{Ai1 sin(ω1t + γi1) + Ai2 sin(ω2t + γi2)} . (6.11)

Using the product rules for the sine-function yields

F2x =
A11A21

2
cos(γ11 − γ21) +

A12A22

2
cos(γ12 − γ22) +

A11A22

2
cos((ω2 − ω1)t + γ22 − γ11) +

A21A12

2
cos((ω1 − ω2)t + γ21 − γ12) −

A11A22

2
cos((ω2 + ω1)t + γ22 + γ11) −

A21A12

2
cos((ω1 + ω2)t + γ21 + γ12) −

A11A21

2
cos(2ω1t + γ11 + γ21) −

A12A22

2
cos(2ω2t + γ12 + γ22) . (6.12)
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Equivalent formulae can be derived for the vertical second-order force.
Using the amplitudes of the incoming waves, equation 6.12 can, according
to Pinkster [20], also be written as

F2x = ζ2
1C1 + ζ2

2C2 + 2ζ1ζ2Tx cos((ω1 − ω2)t + ǫ) + · · · . (6.13)

The function Tx(ω1, ω2) is called the transfer function of the slow-drift force,
the constants C1 and C2 are the drift forces corresponding to frequency ω1

and ω2. With the use of the Fourier-transform, or using a fitting proce-
dure to separate sine and cosine functions hidden in equation (6.12), this
transfer function of the slow-drift force can be calculated. In the following
the latter method will be used. First we will present results for water of
infinite depth, then we will show results for finite depth water in order to
study the bottom effect.

6.4.1 Results for infinite depth

The method outlined above for the calculation of the slow-drift forces
has been applied to the case of the cylinder of infinite length: the two-
dimensional case. The bottom is assumed to be infinitely far away.

Because the incoming wave consists of two harmonic waves, the time-
domain equation of motion (6.4) has been used to calculate the first-order
motions. The time-integration of this equation has again been done by
using the method of Crank-Nicholson. The step-response functions have
been interpolated to suite the time realisations in the time integration.
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Figure 6.21: Transfer function for infinite depth as a function of ω2 for several

realisations of ω1.
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The results for the transfer function of the horizontal force are given in
Figures 6.21. The figure shows the transfer function as a function of ω2

for several values of ω1. Note that the figure on the right-hand side has
an enlarged vertical scale. The transfer function seems to be a rather
smooth function of ω2. As a function of ω1, the function seems to have an
asymptotic value ρg.

6.4.2 Results for finite depth

All moored ships essentially lie in water of finite depth. Especially ships
moored in or close to a harbour may suffer from effects due to the shallow
water. Thus the transfer functions should also be calculated for the shallow
water case.
We performed the same calculations as in the previous section, but now
for water depth h = 2R, which is rather shallow. These calculations were
made possible by Sierevogel [28], who adapted the computer program to
include finite depths. The results are shown in Figures 6.22.
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Figure 6.22: Transfer function for finite depth as a function of ω2 for several realisa-

tions of ω1.

The effects of the finite depth on the transfer function are quite remarkable.
For lower ω2, the transfer function is considerably lower; for higher ω2 it
tends to be the same as the function for infinite depth. Another important
effect is that the transfer function is no longer an increasing function of
ω1, as can be seen from Figure 6.22. For much higher values of ω1 and
ω2 the transfer functions for finite and infinite depth should of course be
equal, because the waves will then be much shorter than the water depth.

However, for our highest frequency, ω
√

R
g = 1.4, this is by far not the case.

The wavelength is still more then three times the water depth, thus is seems
logical that even for these high frequencies a difference is present between
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the transfer functions for finite and infinite water depth.

6.5 Conclusions

In this chapter we replaced the harmonic waves and motions by more
realistic sea states. The equation of motion was rewritten, according to
Ogilvie [18] as a proper time-domain differential equation. This equation
contains a step-response function which has been written as a sum of or-
thogonal generalized Laguerre polynomials. Using a displacement function
with a wide enough spectrum, this step-response function has been esti-
mated numerically. Then this response function was used for the calcula-
tion of the same hydrodynamic coefficients as in chapter 3.
For zero forward speed, the new coefficients agree much better with mea-
surements performed by Vugts [31]. Problems arise when the spectrum of
the displacement function contains very extreme frequencies. These prob-
lems could have been overcome by using a non-equidistantial grid. However,
the accuracy for the relevant frequencies for the drift-force calculation, is
very good.
When forward speed was included, the results agreed reasonably well with
the results of chapter 3. However, some coupling coefficients changed con-
siderably. Because no values are given in literature, the question remains
which of the two results is more reliable.

Knowing the response functions, it became possible to calculate the drift
forces due to an incoming wave consisting of several frequencies. An inter-
esting effect is the slow-drift force. Although the calculation of these forces
enhances some additional terms not present in our mathematical model,
the forces were calculated in order to show that it is possible using our
numerical algorithm. The forces were calculated for zero forward speed for
finite and infinite depth. The most remarkable difference between these
two depths is the fact that the forces are much smaller for finite depth. For
higher frequencies the calculations tend to give the same results for both
depths.



Conclusions

Based on the investigations presented in this thesis several conclusions can
be drawn.

The formulae for the drift force and moment on a tanker without forward
speed as shown in literature, are incomplete. A thorough derivation shows
that an additional term should be included. This term involves combina-
tions of first-order rotations. It may be seen as a force resulting from the
displacement of the point of gravity of the hull deck due to these rotations.
The drift-force formula changes little when forward speed effects are in-
cluded up to the first order in the velocity. The terms the formula consists
of, become somewhat more complicated, but no additional terms are in-
troduced. However, when the speed is included up to second order, many
additional terms will appear in the drift-force formula. Most of these terms
are due to the stationary wave height, which was neglected in the first-order
approximation. On the other hand, it must be noted that including effects
due to the stationary wave height seems rather inconsistent. In the case
that this wave height is important, it would have been much more appro-
priate to linearize the free-surface condition around this stationary wave
height.

The algorithm suggested in literature to solve the time-dependent equa-
tions, is unstable when forward speed effects are included. The algorithm
is based upon solving the Laplace equation and the time-dependent free-
surface condition separately. This algorithm works very well for zero for-
ward speed. However, when forward speed is included, the time-dependent
free-surface condition becomes an analytically unstable equation. This
means that no time-integration method can be found to integrate this equa-
tion. This is due to the fact that the free-surface condition is solved sep-
arately from the Laplace equation, i.e. the continuity equation. At each
time step the solution is forced to satisfy this continuity equation. However,
during such a time step, the solution is free to follow the eigen-modes of
the free-surface condition and may not satisfy the demand for continuity.
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To overcome this problem, a new algorithm has been developed, which
combines the Laplace equation and the free-surface condition. Using this
method, the resulting time integration is stable for all relevant speeds, grid
sizes, and time steps. This new algorithm may even be used for the integra-
tion of the non-linear problem, although the actual formulation becomes a
bit more complicated.

The newly developed algorithm gives good results in comparison to results
shown in literature. The results for a two-dimensional problem agree well
with results given by Vugts [31] and Zhao [36]. For the three-dimensional
test case of a floating sphere, excellent agreement has been found with re-
sults of Pinkster [20] and Nossen [17]. The results for the sailing commercial
supertanker, with a depth-draught ratio of 1.2, are new, and can therefore
not be compared with literature. The results for zero forward speed agree
reasonably well with results found by Oortmerssen [19] and Pinkster [21].

It is essential to use the double-body potential as an approximation for the
steady potential. Making use of the undisturbed-flow potential on the free-
surface (or even in the whole fluid domain) yields inaccurate predictions of
coupled hydrodynamic coefficients and unrealistic drift-force results. Thus
methods based on the undisturbed-flow potential must be used with great
care, and may only be accurate for the main hydrodynamic coefficients.

The accuracy of the results for the supertanker depend strongly on the ac-
curacy of the double-body potential. Because the grid on the hull was too
coarse to represent the stationary velocity field accurately, the final results
may lack accuracy in the case of forward speed. This can be overcome by
using finer grids, or, preferably, by using a higher-order panel method for
the calculation of the double-body potential.

When integrating the equations in the time domain, it is no longer neces-
sary to assume the motions and waves to be harmonic. This opens the way
to more general time signals. Using these more general signals, it becomes
possible to calculate the step-response function. This function is only de-
pendent of the speed and the hull shape. An effective way of calculating
this function is expanding it in terms of generalized Laguerre polynomials.
Then continuity and the correct asymptotical behaviour of the response
function are guaranteed.
The results for the step-response function look very convincing. The results
for the hydrodynamic coefficients, calculated from this response function,
are even more accurate than the results obtained using harmonic motions.
The agreement with Vugts [31] is also much more convincing.
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Finally, it is possible to use our new algorithm and the step-response func-
tions to calculate the slow-drift force. Preliminary results show that the
influence of finite depth on this force may be large. However, more in-
vestigation is needed, for example in order to include the effects of the
second-order potential.



Appendix A

Asymptotic analysis of the

Green’s function

In this appendix the derivation will be given of the asymptotic behaviour of
the Green’s function satisfying the Neumann-Kelvin condition at the free-
surface. The path of integration will be extended to the complex plane, and
the method of stationary phase will be used.

A.1 Green’s function

To analyse the asymptotic behaviour of the waves generated by a body
at forward speed, we study the behaviour of the Green’s function of the
Laplace equation satisfying the Neumann-Kelvin condition at the free-
surface. The Neumann-Kelvin condition is an approximation of the lin-
earized condition used in this thesis, but far away from the object this
approximation is very good. The Green’s function has been given by We-
hausen [33] :

G
(

~x, ~ξ
)

=
1

∣

∣

∣~x − ~ξ
∣

∣

∣

−
1

∣

∣

∣~x − ~ξ1

∣

∣

∣

+ Ψ
(

~x, ~ξ
)

, (A.1)

with

Ψ
(

~x, ~ξ
)

=
2g

π

π
2
∫

0

∫

L1

F (θ, k)dkdθ +
2g

π

π
∫

π
2

∫

L2

F (θ, k)dkdθ ,

and

F (θ, k) =
kek(z+ζ+i(x−ξ) cos θ) cos (k(y − η) sin θ)

gk − (ω + kU cos θ)2
,
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and the contours L1 and L2 given in Figure 4.2. In Figure 4.2 ki represent
the polars of the integrand. The vectors ~ξ and ~ξ1 are short hand notation
for (ξ, η, ζ) and (ξ, η,−ζ).

"!
-

"! L1

.k2k1.

 #
-

"! L2

.
k4

k3.

Figure A.1: Integration paths for the Green’s function.

We want to find the asymptotic behaviour of this Green’s function far away
from the body. Thus we introduce a large parameter R using cylindrical
coordinates

x − ξ = R cos(γ)

y − η = R sin(γ) .

Note that the z-coordinate may still be close to the ζ-coordinate.
Using these cylindrical coordinates, the asymptotic behaviour of the first
part of the Green’s function can be found very easily. The distance between
two points can always be written using the cosine-rule:

r2 = |~x|2 +
∣

∣

∣

~ξ
∣

∣

∣

2
− 2 |~x|

∣

∣

∣

~ξ
∣

∣

∣ cos(α) ,

with α the angle between ~x and ~ξ. Assuming that the distance from ~x to
the origin is much larger than the distance from the source point to the
origin, we arrive at

r = |~x|



1 −

∣

∣

∣

~ξ
∣

∣

∣

|~x|
cos(α) + O

(

1

|~x|

)2


 .

Applying the same procedure to r1 and substituting these results in the
first parts of the Green’s function, leads to

1

r
−

1

r1
=

1

|~x|2

(∣

∣

∣

~ξ1

∣

∣

∣ cos(α1) −
∣

∣

∣

~ξ
∣

∣

∣ cos(α)
)

.

Using the large parameter R we have

1

r
−

1

r1
=

{

O
(

1
R2

)

z 6= 0

0 z = 0 .
(A.2)

The asymptotic analyses of the function Ψ is much more complicated and
will therefore be given in the next section.
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A.2 Asymptotic analyses of the function Ψ

The function Ψ consists of several integrals, as can be seen from equa-
tion A.1. Therefore we will split the function up in four parts. For each
of these parts a complex contour integration will be carried out and the
method of stationary phase will be used. Combining the results will yield
the asymptotic behaviour of the total function.

Because the function Ψ consists of a sum of two integrals, we first split it
up as

Ψ
(

~x, ~ξ
)

= I1 + I2 .

The function F involved in Ψ is a product of several exponential factors
and a cosine function. For the sake of uniformity, we rewrite the cosine
function:

cos(t) =
eit + e−it

2
.

This suggest a further splitting up of the function Ψ:

Ψ
(

~x, ~ξ
)

= (I11 + I12) + (I21 + I22) .

Because these separate integrals are very much alike, only one of the anal-
yses will be shown. For the other integrals the overall result will be given.
Here we will study the asymptotic behaviour of I11:

I11 =
g

π

1

2
π
∫

0

∫

L1

kek(z+ζ+iR cos(γ−θ))

gk − (ω + kU cos θ)2
dkdθ . (A.3)

A.2.1 Complex integration

The integration of equation (A.3) with respect to k can be performed an-
alytically by extending the path of integration to the complex plane. The
path of integration is chosen in the first quadrant, as shown in Figure A.2.
The value of the contour integral can be calculated using the residuals at
the poles. By splitting up the contour integral in separate parts, the wanted
integral of equation A.3 can be calculated.

The first contribution to the contour integral is the integration over a finite
part of the contour L1:

J1 =

∫

L
′

1

kek(z+ζ+iR cos(γ−θ))

−U2 cos2 θ(k − k1)(k − k2)
dk .
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(0, r)

(r, 0)

Figure A.2: Path of integration in the complex plane.

When expanding the contour to infinity, this integral is the integral involved
in the calculation of I11.
The second contribution to the contour integral is the integral over the arc.
On this arc we introduce a new coordinate: k = reiα. Using this coordinate
the integral becomes

J2 =

π/2
∫

0

ir2e2iαereiα(z+ζ+iR cos(γ−θ))

−U2 cos2 θ(reiα − k1)(reiα − k2)
dα .

By using that the absolute value of an integral is smaller than the integral
over the absolute value of the function, we get

|J2| ≤

π/2
∫

0

r2er cos α(z+ζ)−r sinαR cos(γ−θ)

U2 cos2 θk1(θ)k2(θ)
dα .

This integral goes to zero rapidly when r is extended to infinity, provided
that cos(γ− θ) > 0. Note that z + ζ < 0 and that the approximation of the
nominator is only valid when r > k2 + 1, which is fulfilled when r tends to
infinity.
The final contribution to the contour integral comes from the integral over
the imaginary axis. Introducing a new coordinate σ = ik yields

J3 = −

r
∫

0

iσeσ(i(z+ζ)−R cos(γ−θ))

−U2 cos2 θ(iσ − k1)(iσ − k2)
idσ .
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Using the same technique as above and integrating the final integral ana-
lytically, gives

|J3| ≤ −
1

U2 cos2 θ

1

k1(θ)k2(θ)
e−σR cos(γ−θ) ∗

(

σ

R cos(γ − θ)
+

1

R2 cos2(γ − θ)

)∣

∣

∣

∣

r

0

.

When r is extended to infinity, this contribution is of order 1
k1k2R2 .

Knowing that the contour integral equals the sum of residuals and using
the results above, yields

∫

L1

kek(z+ζ+iR cos(γ−θ))

−U2 cos2 θ(k − k1)(k − k2)
dk = 2πi

k1e
k1(z+ζ+iR cos(γ−θ))

U2 cos2 θ(k2 − k1)
+

+O

(

1

k1k2R2

)

. (A.4)

Note that this equality only holds when cos(γ − θ) > 0. If this is not the
case, the complex contour should have been extended to the fourth quad-
rant, yielding no residual contribution. Furthermore the contribution of the
polar k2 has been neglected, because this wave number represents slowly
travelling waves. These waves will not cause any problems in time-domain
simulations and are therefore neglected in the asymptotical analysis.

A.2.2 Method of stationary phase

After the integration of the Green’s function with respect to k, the inte-
gration with respect to θ can be carried out by means of the method of
stationary phase. For an introduction in this method the reader is referred
to [1] . The integral resulting from the complex contour integration is

I11 = 2gi

π/2
∫

0

k1(θ)ek1(θ)(z+ζ)+ik1(θ)Rcos(γ−θ)

U2 cos2 θ(k2(θ) − k1(θ))
dθ ,

provided that cos(γ − θ) > 0. Here we neglected the contribution of

O
(

1
k1k2R2

)

.

The method of stationary phase requires a large parameter in the exponent,
which might be taken to be R. However, the distance R is not necessarily
large itself, but large relative to the wave length. This implies that a suit-
able large parameter is k(θ)R. Unfortunately, the large parameter can not
be a function of the integration variable θ. Thus we rewrite

k(θ)R = k(0)R
k(θ)

k(0)
= k(0)Rk(θ) .
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The new parameter k(0)R is constant and large, because k(0) is of the same
order as k(θ). The function k(θ) is always larger than 1 and is smaller than
1+2τ
1−2τ for small velocities.
The method of stationary phase can be applied when a point c exists within
(0, π/2) for which the derivative of the phase function is zero. If no sta-
tionary point exists, simple partial integration will lead to a power series
in 1

k(0)R .

The phase function of our integral is given by

f(θ) = k1(θ) cos(γ − θ) .

The stationary point is then the root to θ of

∂k1

∂θ
cos(γ − θ) + k1(θ) sin(γ − θ) = 0 .

For zero forward speed, the derivative of k1 to θ is zero, thus leading to
c = γ. Because the stationary point can only exist in the interval (0, π/2),
this gives a contribution in the first quadrant only. This means that waves
generated in the first quadrant will stay within this quadrant and travel
along a straight line, as could have been expected.
In the case of forward speed, the derivative of k1 to θ is no longer zero.
However, it can be shown that this derivative is always positive for θ ∈
(0, π). As k1 itself is always positive, and cos(γ − θ) was assumed positive
as well, we arrive at

sin(γ − c) < 0 .

This leads to the conclusion that γ− c ∈ (−π/2, 0). Because this difference
was zero for zero forward speed, we may expect it to be small for small
forward speed, thus leading to

c = γ + ε ,

with ε ∈ (0, π/2). As can be seen from Figure A.3, this is just as was to be
expected.
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Figure A.3: Asymptotic ray pattern.

The asymptotical behaviour of I11 is then given by

I11 =































































C
ek1(c)(z+ζ)eik1(c)R cos(γ−c)

√

k1(0)R
∃c ∈ (0, π/2)

O

(

1

k1(0)R

)

¬∃c ∈ (0, π/2) ∧

∃ θ ∈ (0, π/2) :
cos(γ − θ) > 0

O

(

1

k1k2R2

)

¬∃θ ∈ (0, π/2) :

cos(γ − θ) > 0 .

(A.5)

Similar analysis can be applied to the integrals I12, I21, and I22. The inte-
gral I12 is the same as I11 with γ replaced by −γ, thus contributing to the
fourth quadrant. The integrals I21 and I22 contribute to the second and
third quadrant, provided that the speed is not too large. If U > 1

4
g
ω , no

waves exist at the upstream side of the object.

A.2.3 First correction

The first correction to the asymptotical behaviour of the function Ψ, given
in the previous section, arises from simple partial integration. When no
stationary phase exists, this is the first term of a power series in 1

k1(0)R
.

When the method of stationary phase was applied, this is the first correction
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within this theory, see [1].
If the integral to be analysed reads

b
∫

a

g(β)eik1(0)Rf(β)dβ ,

then the first correction of the asymptotical behaviour is given by

1

ik1(0)R

{

eik1(0)Rf(β) g(β)

f ′(β)

}∣

∣

∣

∣

β=b

β=a

.

This formula should be used for all four integrals in all four quadrants.
For convenience, we will only show the results for the first quadrant. The
asymptotical behaviour is equivalent in the other quadrants.

In the first quadrant we have four integrals which may contribute to the
asymptotical behaviour. The first integral, I11, was over the interval (0, π/2)
provided that cos(γ − θ) > 0. Because in the first quadrant γ ∈ (0, π/2),
the correction is

{

eik1(0)Rk1(θ) cos(γ−θ) g(θ)

k1

′

(θ) cos(γ−θ)+k1(θ) sin(γ−θ)

}∣

∣

∣

∣

θ=π/2

θ=0

ik1(0)R
.

The corrections due to the integrals I12 and I21 are

{

eik1(0)Rk1(θ) cos(γ+θ) g(θ)

k1

′

(θ) cos(γ+θ)−k1(θ) sin(γ+θ)

}∣

∣

∣

∣

θ=π/2−γ

θ=0

ik1(0)R
,

and

{

eik3(0)Rk3(θ) cos(γ−θ) g(θ)

k3

′

(θ) cos(γ−θ)+k3(θ) sin(γ−θ)

}∣

∣

∣

∣

θ=π/2+γ

θ=π/2

ik3(0)R
.

The fourth integral has no contribution, because the requirement that
cos(γ + θ) > 0 can not be fulfilled for the combination of θ and γ in-
volved. The two wave numbers k1 and k3 are identical, but defined for a
different range of the parameter θ.
Adding all contributions together, and noting that k′

1(0) = 0, we arrive at

−1

ik1(0)R

{

g(π/2 + γ)

k1(π/2 + γ)
+

g(π/2 − γ)

k1(π/2 − γ)

}

, (A.6)
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with

g(θ) =
2gik1(θ)ek1(θ)(z+ζ)

U2 cos2 θ(k2(θ) − k1(θ))
.

Note that the oscillatory behaviour vanishes, even for the case of zero for-
ward speed. For the case of zero forward speed, this has also been found
by Newman [16].



Appendix B

Error estimation of the

absorbing-boundary

condition

In this appendix the error made in the absorbing boundary condition due to
the large elements will be analysed. Using the assumptions already made in
the numerical algorithm, a simple expression can be derived for the bound-
ary condition actually imposed.

B.1 Introduction

To make the mathematical model presented in chapter 1 uniquely solvable,
a radiation condition was introduced. This condition should render the
solution causal, i.e. waves generated by the object should travel away from
the object. In our numerical algorithm this radiation condition was replaced
by an absorbing-boundary condition:

1

c

∂φ

∂t
+

∂φ

∂n
= 0 . (B.1)

In the numerical algorithm the Laplace-equation was replaced by an inte-
gral equation over the boundary of the fluid domain. This boundary was
discretized by defining panels on the boundary. The integral equation was
then discretized assuming that quantities are constant over a panel. This
means that only in one point of the element, the integral equation is solved
exactly. This point was chosen to be the mathematical point of gravity
of the panel. At this point the solution is supposed to be correct and
the waves will be absorbed using (B.1). However, at any other point on
the panel, the integral equation is only solved approximately, thus yielding
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errors in the potential and its normal derivative. This implies that the ab-
sorbing boundary condition will include errors, which may cause reflections
of waves. Thus the error arising from the size of the panels and the assump-
tion that the quantities are constant over a panel, should be investigated.

Because the potential was assumed to be constant over an element, we
study the difference of this potential and the assumed value, i.e. the value
in the midpoint.

B.2 Error in the potential

Green’s theorem gives for the Laplace equation

δφ(~x) =

∫

∂D

(

φ(~ξ)
∂G

∂nξ
(~x, ~ξ) − G(~x, ~ξ)

∂φ

∂nξ
(~ξ)

)

dS , (B.2)

with

δ =











1 x ∈ D
1
2 x ∈ ∂D
0 elsewhere

,

and ∂D the boundary of the domain. Because we are only interested in the
error on the boundary, we have δ = 1

2 .

Let’s consider one element on the boundary, with ~xm the midpoint and ~x
any point in this element. After subtracting the Green’s theorems for those
two points we get

1

2
(φ(~x) − φ(~xm)) =

∫

∂D

{

φ(~ξ)

(

∂G

∂nξ
(~x, ~ξ) −

∂G

∂nξ
(~xm, ~ξ)

)

−
∂φ

∂nξ
(~ξ)
(

G(~x, ~ξ) − G(~xm, ~ξ)
)

}

dS . (B.3)

Because ~x and ~xm are in the same element the main contribution to the
error in φ will be given by the integral over that element. The integral over
the rest of the boundary is assumed to be of a lesser order than the error
in the element itself.

Because ~x and ~xm are in the plane of integration the normal derivative of
the Green’s function is zero. Therefore we have

1

2
(φ(~x) − φ(~xm)) = −

∫

el

∂φ

∂nξ
(~ξ)
(

G(~x, ~ξ) − G(~xm, ~ξ)
)

dS . (B.4)
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If we take the normal derivative of φ to be constant over the element, as
was done in the calculations, we end up with

1

2
(φ(~x) − φ(~xm)) = −

∂φ

∂nx
(~xm)

∫

el

(

G(~x, ~ξ) − G(~xm, ~ξ)
)

dS . (B.5)

B.3 Error in the normal derivative

In order to estimate the error in
∂φ

∂n
we analyse the Green’s theorem (B.2)

analogous to the analysis given in the previous section.

After taking the derivative of (B.2) to nx we get

1

2

∂φ

∂nx
(~x) =

∫

∂D

(

φ(~ξ)
∂2G

∂nξ∂nx
(~x, ~ξ) −

∂G

∂nx
(~x, ~ξ)

∂φ

∂nξ
(~ξ)

)

dS , (B.6)

where we have taken δ = 1
2 again. By by taking the difference of (B.6) for

~x and ~xm we get

1

2

(

∂φ

∂nx
(~x) −

∂φ

∂nx
(~xm)

)

=

∫

∂D

{

φ(~ξ)

(

∂2G

∂nξ∂nx
(~x, ~ξ) −

∂2G

∂nξ∂nx
(~xm, ~ξ)

)

+

−
∂φ

∂nξ
(~ξ)

(

∂G

∂nx
(~x, ~ξ) −

∂G

∂nx
(~xm, ~ξ)

)

}

dS . (B.7)

For the second part of the integral we assume, as was done in the previous
section, that the contributions not due to the element itself, are negligibly
small. Therefore we neglect the remaining integral. But for every point in
the element the normal derivative of the Green’s function equals zero, so
no contribution arises from this part of the integral.

Both terms in the first part of the integral are of the form

∫

∂D

φ(~ξ)
∂2G

∂nξ∂nx
(~x, ~ξ)dS . (B.8)

According to Colton [3], this can be rewritten as

∫

∂D

{

~∇xG(~x, ~ξ) ×
(

~∇tφ × ~nξ

)}

· ~nxdS ,
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with ~∇t the gradient in the orthogonal projection of δD on the plane of the
element, which means that it only contains tangential derivatives. Using
elementary rules for cross products, the integral can be written as

∫

∂D

{

~∇tφ
(

~nξ · ~∇xG(~x, ~ξ)
)

− ~nξ

(

~∇xG(~x, ~ξ) · ~∇tφ
)}

· ~nxdS .

Because the integral can be seen as a sum over elements and because the
normal vector is constant within such an element, partial integration leads
to

∫

∂D

{

~nξG(~x, ~ξ)
(

~∇t · ~∇t

)

φ − G(~x, ~ξ) ~∇t

(

~nξ · ~∇tφ
)}

· ~nxdS .

If we only consider the integral over the element itself and, as before, neglect
the remaining integral, we get

1

2

(

∂φ

∂nx
(~x) −

∂φ

∂nx
(~xm)

)

=

(

~∇t · ~∇t

)

φ

∫

el

{

G(~x, ~ξ) − G(~xm, ~ξ)
}

dS , (B.9)

where we assumed
(

~∇t · ~∇t

)

φ to be constant over the element and where

we used that (~nξ · ~nx) = 1 and
(

~nx · ~∇tφ
)

= 0 on the entire element.

The validity of the assumption that
(

~∇t · ~∇t

)

φ is constant can be ques-

tioned, because φ itself was assumed to be constant. However, these con-
stant values should be seen as samples of an otherwise smooth function.
This function is assumed to have continuous derivatives up to the neces-
sary order. Thus the derivatives may be approximated by a finite difference
scheme acting on the samples of this function.

B.4 Integral over the Green’s function

For both estimated errors we need to calculate
∫

el

{

G(~x, ~ξ) − G(~xm, ~ξ)
}

dS .

If we define the function I(~x) as

I(~x) =

∫

el

G(~x, ~ξ)dS ,
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this can be rewritten as

I(~x) − I(~xm) = (~x − ~xm) ∇I|~x=~xm
+

1

2
((~x − ~xm) · ∇)2 I|~x=~xm

+

+O
(

(~x − ~xm)3
)

, (B.10)

where we made use of a Taylor expansion and assumed that it converges.
In the following calculation we restrict ourselves to rectangular elements,
because this is the shape of the relevant elements in the mesh. The element
is divided into 4 triangles over which the integral can be calculated, see
Figure B.1.

a

d

γ

γ
0

Figure B.1: Rectangular element with triangular subdivision.

For a single triangle the function I(~x) is given by

I△(~x) = d(~x) ln

{

sin(γa(~x) + γ)

1 + cos(γa(~x) + γ)

}∣

∣

∣

∣

γ0(~x)

0

, (B.11)

with d the height of the triangle and the angles γa and γ0 as shown in
Figure B.1, see also chapter 4. The total function I(~x) for the rectangle
can be calculated by summing the four separate contributions.

By straightforward calculations it can be shown that both the x− and the
y−derivative of I(~x) are zero in ~xm. The second-order derivatives are given
by

Ixx =
4b

a
(b2 − a2)

(
√

a2 + b2
)−3

Iyy =
4a

b
(a2 − b2)

(
√

a2 + b2
)−3

Ixy = 0 . (B.12)

Note that all the derivatives are of order O(a−1).
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So the first approximation of the error in the integral over the Green’s
function is given by

E(~x) = I(~x) − I(~xm) = (x − xm)2Ixx + (y − ym)2Iyy . (B.13)

It is easy to see that this error is of order O(a), or in the order of the
perimeter. The supremum of the absolute value of E(~x) is given by

sup
~x∈ el

|E(~x)| = 4ab
∣

∣

∣b2 − a2
∣

∣

∣

(
√

a2 + b2
)−3

,

which is reached at the midpoints of the sides of the rectangle.

B.5 Total error

Now that we know the approximate errors in both φ and
∂φ

∂n
, we can

calculate the error in the radiation condition (B.1). If we subtract the
radiation condition for the midpoint from the one for an arbitrary point
and substitute the estimated errors, we get

Etot(~x) = −
2

c
E(~x)

∂2φ

∂t∂nx
(~xm) + E(~x)

(

~∇t · ~∇t

)

φ(~xm) . (B.14)

By noting that the second tangential derivatives can be replaced by the
normal derivative by means of the Laplacian, and by defining

L(f) =
1

c

∂f

∂t
+

∂f

∂n
,

we get

L(φ)(~x) = L(φ)(~xm) − 2Etot(~x)
∂

∂n
L(φ)(~xm) , (B.15)

with Etot(~x) of the order of the perimeter of the element. Note that, because

Etot(~xm) = 0 ,

the radiation condition is indeed exactly fulfilled in the midpoints.



Summary

In this thesis we study the effect of the forward speed of a ship on the hydro-
dynamic forces, in particular the drift forces. Previous studies, restricted to
zero forward speed, were based on the assumption of harmonic waves, thus
reducing the time-dependent equations to frequency-dependent equations.
In this study the actual time-dependent equations including forward speed,
are solved, enabling to simulate non-harmonic waves.

The physical problem of a ship sailing at full sea, has been translated into a
mathematical model. Within this model, some non-linearities arise. Under
the assumption that the motion of the ship and the waves are small, these
non-linearities are removed. Based on this same assumption a perturbation
series is introduced, used to derive formulae for the drift forces and mo-
ments. Furthermore we assume that the stationary waves generated by the
ship do not influence the drift forces substantially. Thus we approximate
the stationary fluid flow by the double-body flow, neglecting the stationary
waves.

To solve the mathematical model we developed a numerical algorithm. This
algorithm is based on the boundary-element method. This method only
considers values of the quantities on the boundary of the computational
domain. Using this method, the governing differential equation is written
as an integral equation, which is discretized assuming constant quantities
over each element. Then it is shown that the algorithm suggested in lit-
erature is unstable when including forward speed. A new algorithm is
developed, based on combining the integral equation with the boundary
conditions. It is shown that this algorithm is stable for all relevant speeds
and grid sizes.

To test the numerical algorithm, two test cases are considered: a cylinder of
infinite length, and a floating hemisphere. Results are obtained for the hy-
drodynamic coefficients and the drift forces using simulations of harmonic
waves. The agreement between our results and results found in literature
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based on frequency-domain approaches, is very good. Convergence of the
algorithm, both with respect to time and space discretization, is shown for
the case of the cylinder of infinite length.

Results are presented for a commercial supertanker, for speeds of 0, 5 and
10 knots. It appears that the main hydrodynamic coefficients are accurate;
some of the coupling coefficients may lack accuracy. The maximum value
of the horizontal drift force increases considerably with forward speed. For
low speed the accuracy of the drift forces is satisfactory. For higher speeds
the accuracy still leaves to be desired.

The fact that we solve the equations in the time domain, allows us to study
general waves. Calculations are shown for a signal consisting of several
harmonic waves. From these calculations, the step-response function and
hydrodynamic coefficients are determined. The results are compared with
results obtained using one single harmonic wave; the agreement is mea-
surements appears to be better. Furthermore, solving the equations in the
time domain makes it possible to calculate the slow-drift forces of an ob-
ject, both in deep and shallow water. Calculations were performed for the
case of the infinitely long cylinder. It appears that the finite depth has a
large influence on the slow-drift forces.

For future research the following recommendations are made:

• A better absorbing boundary condition has to be developed in order
to reduce the grid size.

• The double-body potential can be calculated more accurately using
a higher-order panel method.

• The mesh used in the calculations should be refined.

• The matrix equation can be solved more accurately using precondi-
tioning or iterative techniques, or by double-precision calculations.

• For higher velocities, linearization should be performed around the
stationary wave field, approximated by the wave height due to the
double-body potential.



Tijdsdomein Berekeningen

van Drift Krachten en

Momenten

Henk Jurriën PRINS

Een schip varend op de oceaan ondervindt verschillende krachten. Deze
krachten zijn het gevolg van wind, golven, stroming en de voorwaartse
snelheid van het schip. Vooral de eerste drie kunnen er de oorzaak van
zijn dat het schip afdrijft, oftewel drift. Drift krachten kunnen groot zijn,
vooral de kracht ten gevolge van de inkomende golven. In dit proefschrift
wordt die laatste kracht bestudeerd en wordt het effect van de voorwaartse
snelheid in rekening gebracht.

Het verschijnsel driften kan gëıllustreerd worden door twee eenvoudige voor-
beelden. Als kinderen met een bal spelen, gebeurt het nogal eens dat de
bal te water raakt. Een handige manier om de bal uit het water te krijgen
is het gooien van aarde en stenen naar de bal. Er onstaan daardoor golven
in het water en de bal drijft langzaam naar de kant. Een tweede voorbeeld
is een schip dat voor anker ligt. Als de golven van opzij komen, wordt het
schip weggeduwd. Omdat het verankerd is, zal het gaan draaien, totdat
het in kopgolven ligt.
De voorbeelden laten zien dat de drift krachten zowel groot als praktisch
kunnen zijn. Ook laten de voorbeelden zien, dat drift krachten belangrijk
kunnen zijn voor zowel verankerde systemen als varende schepen. Omdat
de drift kracht niet een constante kracht is, maar ook langzaam variërende
componenten bevat, kunnen drift krachten er zelfs voor zorgen dat het
verankerde systeem in resonantie geraakt. Hierdoor kunnen ankerlijnen
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breken, of in het ergste geval schepen vergaan.

Om de drift krachten op schepen en off-shore constructies te bepalen zijn
in het verleden veel metingen verricht. Deze metingen zijn echter erg tijd-
rovend en dus geld verslindend. Nu er steeds grotere computers beschikbaar
zijn, is er de mogelijkheid om de krachten te berekenen. Ook is er nu de
computer-capaciteit om de krachten te berekenen in onregelmatige golven.
Om dit laatste te kunnen doen, is er in dit onderzoek een tijdsdomein simu-
latie opgezet. Onder de aanname dat de golven en de voorwaartse snelheid
klein zijn, is een computer programma ontwikkeld. De behaalde resultaten
zijn in goede overeenstemming met metingen.

Het fysisch probleem van een schip varend op zee is eerst vertaald in een
wiskundig model. In dit model komen enkele niet-lineariteiten voor. Onder
de aanname dat de bewegingen van het schip en de golven klein zijn, zijn
deze niet-lineariteiten verwijderd. Gebaseerd op dezelfde aanname is een
storingsreeks gëıntroduceerd, die gebruikt wordt om formules af te leiden
voor de krachten en momenten. Verder is aangenomen dat de stationaire
golven opgewekt door het schip geen invloed hebben op de drift krachten.

Om het wiskundig model op te lossen is een numeriek algorithme ont-
wikkeld. Het algorithme is gebaseerd op de rand-integraal methode, die
alleen maar waarden op de rand van het te onderzoeken gebied beschouwt.
Met deze methode is het aantal dimensies van het probleem terug gebracht
tot twee. Daarna is aangetoond dat de tijdsintegratie methode die veel in
de literatuur gebruikt wordt, instabiel is voor schepen met een voorwaartse
snelheid. Een nieuwe methode is ontwikkeld die stabiel is voor alle rele-
vante snelheden en grid groottes.

Om het numerieke algorithme te testen zijn twee test gevallen onderzocht:
een oneindig lange cilinder en een bol. De resultaten voor de drift krachten
voor deze twee geometrieën zijn in goede overeenstemming met resultaten
uit de literatuur. Convergentie van het algorithme is aangetoond, zowel
wat betreft de tijds- als de plaatsdiscretisatie.

Voor een commerciële supertanker zijn resultaten berekend voor snelheden
van 0, 5 en 10 knopen. De maximale waarde van de horizontale drift kracht
neemt aanzienlijk toe met voorwaartse snelheid. Voor lagere snelheden is
de nauwkeurigheid van de resultaten bevredigend; voor hogere snelheden
zal er nauwkeuriger gerekend moeten worden.

Omdat het probleem opgelost wordt in het tijdsdomein, is het ook mo-



Samenvatting 143

gelijk algemene golven te simuleren. Resultaten gebaseerd op een signaal
bestaande uit meerdere harmonische golven zijn gepresenteerd. Uit deze
berekeningen is de stap-respons functie bepaald. Deze functie weerspiegelt
de reactie van het schip op een plotselinge verplaatsing. Met deze func-
tie kunnen ook de langzaam variërende componenten van de drift kracht
berekend worden. Het blijkt dat de invloed van de diepte van het water op
deze componenten groot is.

Voor toekomstig onderzoek worden de volgende aanbevelingen gedaan:

• Een betere absorberende rand conditie moet ontwikkeld worden. Dit
biedt de mogelijkheid het integratiegebied te verkleinen en dus het
aantal elementen in de mesh te verminderen.

• De double-body potentiaal moet nauwkeuriger berekend worden.

• Om nauwkeurigere resultaten te verkrijgen moet de mesh verfijnd
worden.

• De matrix vergelijking kan nauwkeuriger opgelost worden met behulp
van preconditionerings of iteratieve technieken.

• Voor hogere snelheden zou de linearisatie uitgevoerd moeten worden
rond het stationaire golfveld, benaderd door het golfveld ten gevolge
van de double-body potentiaal.
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